Regulations
The ULSTEIN® POWER Variable Speed Generator (VSG) has been designed to optimise power generation on marine vessels by dynamically adjusting its speed to match load requirements. Together with technical measures and overall ship design, the operational results on the CSOV Olympic Boreas show a record-low 2.7-tonne fuel consumption per 24 hours during a week of DP operations. Vessel’s energy demand Running the engines at variable speed optimises power production based on the vessel&rs...
Advanced boat-handling systems supplied by Vestdavit have been installed on the newbuild CSOV Olympic Notos delivered for Olympic by Norway’s Ulstein Verft, which is raising the bar in terms of sustainability and operational efficiency for such vessels employed in the offshore energy sector. MOB and lifeboat davit “We are honoured to have been selected by Ulstein for participation in this ground-breaking newbuild project based on our well-established track record of reliable davit...
Indian Register of Shipping (IRS) and the Technology Innovation Hub (TIH) Indian Institute of Technology (IIT) Guwahati have successfully completed India’s first training and certification program in deep diving and underwater welding, underscoring a pioneering milestone in the country’s efforts to build a skilled workforce for underwater asset maintenance. Following the agreement between IRS and TIH IIT Guwahati in 2023, the training was held at the Neel Diving Academy, Kochi, wher...
The International BoatBuilders’ Exhibition and Conference (IBEX), North America’s premier trade event for the recreational marine industry, has acquired Professional BoatBuilder magazine (ProBoat), the marine sector’s renowned technical publication and online information source. The ProBoat purchase promises to marry the vitality of IBEX’s live trade event to the magazine’s depth of editorial coverage, creating an unparalleled platform for technical education...
In a remarkable endeavour to celebrate and revive India’s ancient maritime legacy, the Stitched Ship Project is recreating a 4th-century common-era vessel using traditional shipbuilding techniques. The initiative, led by the Ministry of Culture in collaboration with the Indian Navy, M/s Hodi Innovations, and other stakeholders, draws inspiration from historical references, such as Ajanta murals and ancient texts. Modern safety and design This project embodies India's long-standing conne...
Eco Wave Power Global AB (“Eco Wave Power” or the “Company”), a global provider of onshore wave energy technology, is pleased to announce it has received the final Nationwide Permit (NWP) from the U.S. Army Corps of Engineers for its ground-breaking wave energy project at AltaSea’s premises at the Port of Los Angeles. This milestone marks a significant step forward in the development of Eco Wave Power’s pioneering wave energy project, which is set to become t...
News
Safety is the top priority in maritime operations. The Marine Safety Management System (SMS) is essential for ensuring safety and protecting the marine environment. An effective SMS relies on a well-documented framework that includes defining organisational structures, delegating responsibilities, and developing policies and procedures. This structured approach is critical for maintaining ship safety and protecting the marine environment. Maintaining ship safety The SMS is a vital component of the International Safety Management (ISM) Code, detailing all the important policies, practices, and procedures to be followed to ensure the safe functioning of ships at sea. It ensures safe and secure operations by fulfilling various critical objectives, such as: Compliance with Regulations: SMS mandates adherence to all relevant regulations and guidelines. This approach raises safety standards across the maritime domain. Safety of Crew: The most significant aspect of SMS is safeguarding human lives. By implementing robust safety protocols and procedures, SMS endeavors to prevent human injury or loss of life at sea. Adopting preventive approach The primary objectives of SMS can be summarised as follows: Promoting a Culture of Safety: SMS strives to maintain a culture of safety where everyone shares responsibility for security. They aim to be security-conscious by adopting a preventive approach to ensure that safety is integrated into all business activities. This influence helps to cultivate a culture of safety in business relations. Risk Mitigation: SMS is a major player and significant in the risk management of the maritime industry. It helps to detect and mitigate risks at their early stages, assess their magnitude, and implement corrective measures to reduce or eliminate potential hazards. Accidents can be prevented by applying SMS, and maritime activities generally become safer. Continuous Improvement: SMS, a safety management system, is vital and ever-changing for any business. This encompasses evaluating how well security processes are performing to ensure they are up-to-date with the latest changes in a dynamic market. SMS is necessary for protection by utilising new laws, technologies, and updated procedures on best practices. Safety management system Safety Management System (SMS) are the backbone of maritime safety, protecting vessels and their crew. These systems consist of three fundamental functional components that work together to create a comprehensive safety framework: Safety Policy: A fundamental component of a Safety Management System (SMS). It serves as a guiding document that outlines the organisation's commitment to safety and provides clear guidelines for achieving safety objectives. The policy should establish clear safety procedures, set measurable safety goals, and ensure compliance with relevant maritime regulations. Safety Risk Management: Identifying potential dangers on a ship, assessing how serious they are, and taking steps to prevent them. This includes conducting regular checks, putting in place safety measures, and keeping the safety plan up-to-date to address new challenges. Safety Assurance: Checking to make sure that the safety systems and procedures on a ship are working properly. This includes regular inspections, ensuring that safety equipment is in good condition, and practicing emergency drills to prepare the crew for potential incidents. Strong safety record A well-structured Safety Management System (SMS) is a valuable asset for any maritime organisation. By implementing effective safety measures and procedures, SMS can deliver significant benefits below: Enhanced Safety: A well-implemented SMS can significantly reduce the likelihood of accidents and incidents, and protecting the crew onboard. Improved Compliance: SMS helps organisations stay compliant with maritime regulations, avoiding fines and penalties. Reduced Costs: By preventing accidents and incidents, SMS can help reduce costs associated with repairs, lost revenue, and legal liabilities. Enhanced Reputation: A strong safety record can enhance an organisation's reputation in the maritime industry. Increased Efficiency: SMS can improve operational efficiency by identifying and addressing potential hazards before they lead to disruptions. Improved Morale: A safe working environment can boost employee morale and job satisfaction. Risk Mitigation: SMS helps organisations proactively identify and manage risks, minimising their impact. Maintaining positive reputation Maritime regulations are designed to ensure the safety, security, and environmental protection of ships and their operations. By complying with these regulations, vessels can: Prevent accidents and incidents: Adherence to regulations often includes safety standards and procedures that help to prevent accidents and incidents at sea. Protect the environment: Maritime regulations often have provisions related to pollution prevention and environmental protection, such as regulations governing oil spills and waste disposal. Avoid fines and penalties: Non-compliance with maritime regulations can result in fines, penalties, and even legal action. Maintain a positive reputation: Compliance with regulations can help to maintain a positive reputation within the maritime industry and with regulatory authorities. Governing maritime safety Key maritime regulations that vessels must comply includes the below: International Safety Management (ISM) Code: The ISM Code provides a framework for safe ship management and regulatory compliance. International Convention for the Safety of Life at Sea (SOLAS): This is the most fundamental convention governing maritime safety. International Convention for the Prevention of Pollution from Ships (MARPOL): This convention regulates pollution from ships, including oil, chemicals, and garbage. International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW): This convention sets standards for the training and certification of seafarers. Relevant maritime regulations A well-implemented SMS will ensure that a vessel is compliant with all relevant maritime regulations. This can be achieved through a combination of: Regular audits and inspections: To identify areas of non-compliance and take corrective action. Training and education: To ensure that crew members are aware of their obligations and responsibilities under maritime regulations. Documentation and record-keeping: To maintain records of compliance activities and demonstrate adherence to regulations. Making informed decisions The marine industry has adopted a Safety Management System (SMS) that connects different systems on a ship to improve safety and performance. SMS leverages advanced IT technologies and has significantly transformed ship management by providing operators with quick access to data. This, in turn, enables them to make informed decisions, promoting proactive safety management and effective risk mitigation. SMS implementation results in fewer accidents and increased work efficiency while adhering to regulatory requirements. The safety management system protects the crew and the marine. SMS usage demonstrates the marine industry's commitment to excellence and emphasises that meeting safety and efficiency targets is essential to the modern marine business.
Cummins has extended its portfolio of Onan marine generator sets with the introduction of the MDC (Marine Diesel Cummins) Turbo and Onan QSB7E ranges. Details of the two generator sets will be on display at the Marine Equipment Trade Show (METS), a premium European showcase for professionals in the leisure marine industry. MDC Turbo and Onan QSB7E The arrival of the MDC Turbo and Onan QSB7E means boatbuilders and owners can deal with a single trusted brand – Cummins – for the entire power requirement of their vessel. Cummins is the parent brand of Onan and Stamford, a major name in alternators for marine applications. The electrical power spread of the Cummins marine Onan range stretches from 4 kWe to 195 kWe. Previously, the highest Cummins Onan rating available was 65 kWe. Cummins generator sets are renowned for their robust build quality and outstanding performance characteristics, notably in the area of low noise, vibration, and harshness (NVH). Smooth and efficient power delivery The versatility of the MDC and Onan QSB7E is enhanced by the ability to synchronise the generator sets The two new ranges, which can run on 100% hydrotreated vegetable oil (HVO 100), build on that proud heritage of reliable, smooth, and efficient power delivery. The versatility of the MDC and Onan QSB7E is enhanced by the ability to synchronise the generator sets, yielding benefits such as improved stability of electrical supply, greater fuel efficiency, and higher levels of comfort all around for passengers and crew. MDC genset Cédric Merveillaud, Cummins Director of Marine Europe, said, “With the one supplier for propulsion and auxiliary power, life becomes a lot simpler and more productive for boat builders and owners. Cummins can handle the entire power demand.” The MDC genset complies with EPA Tier 3 and EU Stage V regulations and is available for both commercial and recreational marine applications as a 50 Hz or 60 Hz model. It can also be specified as either non-aftercooled or aftercooled. This provides two power outputs, giving the genset a rating of 40 to 80 kWe and 80 to 110 kWe respectively. User-friendly diagnostics Using the Cummins Onan Digital Display, the MDC provides user-friendly diagnostics including extensive engine and alternator information, ensuring customer ease on the water. At the top end of the Cummins Onan genset scale now sits the Onan QSB7E, a perfect low-noise power solution for a variety of maritime applications including high-end superyachts, small passenger ferries, fishing boats, and offshore support vessels. Available as unclassed, class-ready, and full-class, the Onan QSB7E has 10 power nodes and can be specified with an open or enclosed unit in both 50 and 60 Hz models. Maximum output is up to 195 kWe. Single-side service access MDC and Onan QSB7E have single-side service access and the water-cooled exhaust can be installed Like the MDC, the Onan QSB7E can be supplied with the additional option of a front-mounted power take-off which can be used to power various auxiliary systems, for example, hydraulic pumps, giving the customer flexibility and redundancy onboard. For ease of maintenance and maximum use of space, the MDC and Onan QSB7E have single-side service access and the water-cooled exhaust can be installed either in a forward or rear-facing configuration. At the base of both generators are multiple outlets for fuel and battery cables. Reliability, performance, and durability “Cummins marine genset products are designed and built to provide reliability, performance, and durability at reduced noise and vibration levels,” said Merveillaud. “That’s why this complete marine generator set package is ideal for recreational and light commercial vessels." “The 99kW commercial genset node is very popular in certain markets, and we expect the B4.5 genset package with a Cummins Stamford alternator will be an obvious choice when selecting power for operators for years to come.” The MDC and Onan QSB7E gensets are backed by Cummins’ extensive warranty (five years / 2,000 hours), and users have access to a worldwide service network of more than 10,000 authorised dealer locations, the largest such network in the world. Cummins B4.5 packs a propulsion punch The light but power-dense B4.5 is compliant with IMO II, EU Stage V, and RCD 2 regulations without the use of after-treatment. It offers a power range of 102-250 hp in propulsion format (76-186 kW) and 76-129 kWm in auxiliary format. Due to its optimised turbos, the B4.5 has best-in-class peak torque, which not only provides greater acceleration but makes it easier to maintain speed, even for vessels with high loads such as dredgers and fishing boats. Cost savings The high-pressure common rail fuel system of the B4.5 delivers class-pioneering fuel consumption The high-pressure common rail fuel system of the B4.5 delivers class-pioneering fuel consumption while its cast water-cooled exhaust manifold makes for lower surface temperatures and improved overall performance. The air intake system includes commercial and recreational reusable washable air cleaners for more cost savings. Remote backup throttle option The electrical system is offered in both 12 and 24 volts with simple electrical OEM interface connections that can be integrated with Cummins’ C Command Systems. A remote backup throttle option is also available for easier integration for vessels that require it. The electronic system includes automated push button start/stop controls easily integrated through the ECM. It also features engine protection and derate reducing the risk of catastrophic failure. B4.5 The B4.5 is available with a base warranty of 24 months or 1,000 hours for high output and light duty applications; 24 months or 3,000 hours for intermittent duty applications; or 24 months or unlimited hours for continuous duty and prime power applications. The B4.5 is offered with either dry or wet exhaust elbows which allows for easier integration with any vessels that need to be repowered. Cummins QSB 6.7 for smooth and responsive performance The compact design and flexible installation options make the Cummins QSB 6.7 ideal The compact design and flexible installation options make the Cummins QSB 6.7 ideal for a wide range of boat applications. Its outstanding performance is courtesy of a perfectly matched turbocharger and a new 24-valve cylinder head that delivers industry-pioneering power density. QSB6.7 compliant The QSB 6.7 is also amazingly quiet, emitting 80 percent less noise at idle, helped by the new Walker air filter and the same smoothly efficient high-pressure common rail fuel system as featured on the B4.5. The QSB6.7 is compliant with IMO II, EU Stage V, and RCD 2. In recreational marine propulsion mode, the power ranges from 230-550 hp (172-410 kW) and from 98-210 kWm in auxiliary mode. It delivers incredible torque of 720-1250 lbft (976-1695 Nm) for maximum enjoyment at the helm. Tube-and-shell heat exchanger Single loop, low-temperature aftercooling eliminates the need for two keel coolers and lowers emissions. The tube-and-shell heat exchanger is designed for superior durability and ease of service with minimal maintenance requirements. Fan drive is available for radiator-cooled configurations. The QSB 6.7’s electrical system is offered in both 12 and 24-volt isolated and non-isolated versions The QSB 6.7 complies with US EPA Tier 3 emissions regulations without the use of aftertreatment. It is designed to meet the International Association of Classification Societies (IACS) and SOLAS requirements. Oil service intervals can be increased to 500 hours if using ultra-low sulphur diesel (ULSD). As with the B4.5, the QSB 6.7’s electrical system is offered in both 12 and 24-volt isolated and non-isolated versions. 6.7’s 24v Quantum System electronics package The QSB 6.7’s 24v Quantum System electronics package features a proven ECM to monitor operating parameters such as fuel consumption, duty cycle, engine load, and speed while providing diagnostics, prognostics, and complete engine protection. A simplified electrical customer interface box for all vessel connections removes any complexity from installation. The QSB 6.7 is available with a base warranty of 24 months or 1,000 hours for high output and light duty applications; 24 months or 3,000 hours for intermittent duty applications; or 24 months or unlimited hours for continuous duty and prime power applications.
Strategic Marine is proud to announce the successful delivery of a StratCat 27 Crew Transfer Vessel (CTV) to ORLEN to operate in Poland’s growing offshore wind sector. This state-of-the-art vessel is designed specifically for offshore wind farm operations. The StratCat 27 is scheduled to begin operations in the North Sea before transitioning to the Polish exclusive economic zone in the Baltic Sea. Offshore wind farms StratCat 27 is a cutting-edge vessel fitted with avant technologies to meet demanding conditions The StratCat 27 is a cutting-edge vessel equipped with advanced technologies to meet the demanding conditions of offshore wind farms. Designed with efficiency and sustainability in mind, the vessel meets Tier III emission requirements and is hybrid-ready, allowing for future adaptation to alternative energy sources. Its reinforced hull plating makes it capable of withstanding the harsh conditions of the Baltic Sea, ensuring safe and reliable transport of technicians and supplies over long distances. Key features of the StratCat 27 Hybrid-Ready: Future-proofed for hybrid system installation, potentially reducing emissions and enhancing fuel efficiency. Tier III Compliant: The vessel meets the latest emission standards with the latest emissions mitigation technology. Bespoke Design: Tailored to operate in the challenging conditions of the Baltic Sea, with reinforced hull plating for enhanced durability in light ice conditions. Comfort and Safety: Accommodates up to 9 crew members and 24 passengers, ensuring optimal comfort and safety during technician transfers. Navigation and communication systems StratCat 27 is equipped with cutting-edge navigation and communication systems Mr. Chan Eng Yew, Chief Executive Officer of Strategic Marine, commented on the delivery: “We are delighted to have successfully delivered the StratCat 27 to ORLEN. The StratCat 27 is built with future in mind, offering hybrid readiness, emission compliance, and the ability to operate in harsh sea conditions. We are proud of our collaboration and look forward to supporting their continued success in the offshore wind market.” The StratCat 27 is equipped with cutting-edge navigation and communication systems, ensuring maximum operational efficiency and safety. Advancing maritime solutions Its interior is designed to provide maximum comfort for both crew and passengers, making it a vital asset for offshore wind farm operations. This delivery solidifies Strategic Marine’s commitment to advancing maritime solutions for the renewable energy sector and highlights its expertise in building vessels that meet the rigorous demands of offshore wind farm operations around the world.
“Safety is more than just compliance. It is now synonymous with security, reliability, collective relationships and people. Safety is also becoming systems-based rather than rooted in prescriptive rules or specific component procedures." "Only by embracing a proactive, systems-oriented approach to safety, can the maritime industry navigate the path to a decarbonised future while ensuring the well-being of its seafarers and the protection of the marine environment.” ABS-classed fleet Council members also heard how ABS has continued to hold the number one position That was the message from Christopher J. Wiernicki, ABS Chairman and CEO, to members at the annual ABS Advisory Council Meeting, which included presentations from the Commandant of the U.S. Coast Guard (USCG) and the Administrator of the U.S. Maritime Administration (MARAD). Council members also heard how ABS has continued to hold the number one position in global order book share and has grown the existing ABS-classed fleet to 298 million gross tons, with more than 11,500 assets. Range of emerging technologies ABS continues to be a pioneering voice in the industry with trusted insights into a range of emerging technologies while recording industry-pioneering port state and fleet safety performance. “Technology is advancing very quickly, and we are moving into an age where we need short-, mid- and long-term game plans. ABS is keeping one eye on today and one eye on tomorrow and making the right investments to support our safety mission and our clients,” said Wiernicki. Technological change and challenges Admiral Linda Fagan, Commandant, U.S. Coast Guard, said: “Safety at sea requires a unified effort from all stakeholders. Leadership and partnership, particularly with the Coast Guard, ABS and MARAD, are serving us well in supporting U.S. maritime governance, safety and security.” Maritime Administrator Ann Phillips, Rear Admiral U.S. Navy (Ret.), said: “With the increased pace of technological change and the challenges related to building our maritime workforce - collaboration is critical. MARAD continues our advocacy for a modern U.S. maritime transportation network with a particular focus on recruiting, training and retaining mariners - along with key investments for our ports, waterways and infrastructure." Next-generation vessel designs The comprehensive discussion included insights into next-generation vessel designs Phillips added: "We thank ABS and the Coast Guard for their continued leadership as we work together to enhance the safety, security and the overall health of the U.S. maritime industry and maritime commerce.” The comprehensive discussion included insights into next-generation vessel designs, clean energy initiatives, the role of retrofitted carbon capture and energy efficiency technologies, cybersecurity and the availability and scalability of fuels. Overview of digital solutions “We believe carbon capture, clean hydrogen, electrification, digital technologies such as machine learning and renewable power sources like nuclear are going to be key solutions impacting maritime going forward,” said Wiernicki. Council Members were also given an overview of digital solutions supporting compliance in the rapidly changing regulatory landscape and how ABS is using an efficient and streamlined class process that leverages condition-based data, reduces downtime, and minimises time on board. Additionally, the discussion focused on industry challenges and opportunities due to an increasing focus on technical investments, business automation, cybersecurity and risk management.
At 5.8 million TEU, container throughput at the Port of Hamburg remained at almost the same level year-on-year during the first nine months of 2024. Throughput of loaded containers saw slight growth, alongside an increase in general cargo. “Rail forwarding, a cornerstone of sustainable transport, also developed positively in the first nine months. As Europe’s largest rail port, we attach great importance to the expansion of rail transport. Container transport in this segment rose by 2.7 percent and the Port of Hamburg also gained ground in terms of total rail tonnage”, says Axel Mattern, Member of the Executive Board of Port of Hamburg Marketing (HHM). Attacks by Houthi militias The weak German economy continues to impact total throughput at the port However, the weak German economy continues to impact total throughput at the port. The tense political circumstances with the war in Ukraine and the attacks by Houthi militias in the Red Sea merely exacerbate this situation. Total seaborne cargo throughput fell by 3.0 percent and stood at 84.0 million tonnes in the period from January to September 2024. Varying status of container throughput At 5.1 million TEU, loaded container throughput grew by 0.2 percent in a year-on-year comparison. By contrast, the throughput of empty containers slumped by 4.6 percent to 722,000 TEU. Overall container throughput was 5.8 million TEU (−0.4 percent). Container throughput by tonnes – 58.2 million or −0.1 percent – therefore reached almost the same level as in the previous year. A larger number of western ports were used as transshipment hubs for Asia-Mediterranean volumes due to the temporary rerouting of vessels around the Cape of Good Hope. Hamburg did not benefit from this positive effect in container throughput. The conventional general cargo segment again offered a silver lining. With its considerable potential for value-added, this segment grew by 3.7 percent to 904,000 tonnes. Bulk goods continue to show mixed trends Throughput of grab cargo amounted to 13.5 million tonnes overall (−7.7 percent) Throughput of bulk cargo at the Port of Hamburg experienced a slight recovery over the course of the year. It stood at 24.9 million tonnes (−9.3 percent) after the first nine months. The decline had been 12.1 percent at the halfway point in the year. The drop in coal throughput resulting from the shutdown of some power plants remained a noticeable factor. Throughput of grab cargo amounted to 13.5 million tonnes overall (−7.7 percent). Imports of oilseeds For suction cargo or agribulk, with a throughput of 4.8 million tonnes (−4.1 percent), the export of animal feed stood out positively with 1.0 million tonnes and an increase of 7.8 percent. Imports of oilseeds also improved by 2.8 percent to 2.3 million tonnes. Liquid cargo throughput dropped by 15.6 percent to 6.6 million tonnes, despite a 34.6 percent surge in petroleum product exports, which reached 1.3 million tonnes. Stable ranking of trade partners The second-strongest partner country recorded an increase of 7.6 percent to 520,000 TEU Accounting for a throughput of 1.6 million TEU, China has remained the strongest partner country in the period from January to September 2024. Trade with the United States is growing as well. The second-strongest partner country recorded an increase of 7.6 percent to 520,000 TEU. Trade with Brazil also rose by 2.6 percent to 124,000 TEU. Registering growth of 3.5 percent and throughput of 81.000 TEU, Mexico was another positive example. In addition, seaborne trade with Poland (4th place) experienced a positive development with an increase of 16.0 percent and a volume of 232,000 TEU. Malaysia (9th place) was another pleasing example with 144,000 TEU and a rise of 29.8 percent. More vessels calling Hamburg Ship calls with capacity for container cargo in the Port of Hamburg were up 0.3 percent year-on-year in the first three quarters of 2024. Moderate and small vessel sizes experienced a positive development. Container transport by rail in seaport-hinterland transport grew by 2.7 percent in the first nine months of this year, reaching 2.0 million TEU. Benefits of rail transport Total tonnage reached 35.1 million tonnes, representing a year-on-year growth of 1.4 percent. “These figures underscore the high performance and environmental benefits of rail transport." "Despite poor weather conditions, technical challenges and workforce shortages, rail remains on the path to success”, emphasises Mattern.
Hamburger Hafen und Logistik Aktiengesellschaft (HHLA AG) will continue to be majority-owned by the City of Hamburg and will be further developed together with the new major shareholder Mediterranean Shipping Company, the world's largest container shipping company. Following the approval of the Hamburg parliament and the EU Commission, all closing conditions have now been met with the approval of the Ukrainian merger control authority. Shares in HHLA AG The Free and Hanseatic City of Hamburg will hold around 69% of the listed shares in HHLA AG, up from 50.1% As previously announced, the transaction will be completed by the end of 2024. MSC Mediterranean Shipping Company has acquired shares from shareholders through a tender offer and on the open market and will also acquire part of the shares previously held by Hamburg. The Free and Hanseatic City of Hamburg will hold around 69 percent of the listed shares in HHLA AG, up from 50.1 percent. As with Hamburg Airport, the company will be managed under municipal control, but with the expertise of a private sector partner. Strategic partner for HHLA Dr. Melanie Leonhard, Senator for Economics and Innovation, said: "Our port is an important location for international logistics in Germany and Europe. HHLA will continue to provide reliable services for all customers of the Port of Hamburg. However, in order to continue to fulfil its functions for Hamburg and its hinterland, we need to further develop and modernise the port." "With its expertise in maritime logistics, Mediterranean Shipping Company will be a strategic partner for HHLA in the necessary further development. After extensive consultation and review, all authorities and institutions involved have now determined that there are no legal concerns and that the transaction can be implemented as agreed." Future viability of HHLA Dr. Andreas Dressel, Senator for Finance: "Everything has been thoroughly examined, discussed and weighed up. All commitments will be honoured: The City of Hamburg will retain its majority shareholding in HHLA through our group holding company, HGV. Key agreements have been contractually agreed, including employee co-determination. The proceeds from the transaction and a capital increase by MSC will enable substantial investments of almost half a billion euros in the modernisation and future viability of HHLA, without us having to use additional taxpayers' money." "The partnership must and will now prove itself in practice over the next few years. In the interest of the Port of Hamburg, we should all respect the democratically made decision and wish the partnership every success in terms of value creation and jobs." Long-standing partnership Soren Toft, CEO of MSC Mediterranean Shipping Company, said: "We are delighted that the transaction is now close to a successful conclusion. Together with the City of Hamburg as majority shareholder, we will support HHLA and the Port of Hamburg to return to a growth path." "As part of our long-standing partnership, we will further strengthen our presence in Hamburg and provide HHLA with additional equity to invest in the modernisation of its infrastructure." Further development of HHLA AG Hamburg and MSC announced a strategic partnership for the further development of HHLA AG On 13 September, Hamburg and MSC announced a strategic partnership for the further development of HHLA AG. The aim of the partnership is to create a strong basis for the sustainable further development of HHLA. The Port of Hamburg will become an important hub in MSC's global shipping and intermodal network, strengthening its position as a pioneering North-West European trade hub. As part of the agreement, MSC will significantly increase its cargo throughput at HHLA's terminals in Hamburg from 2025. Invest in HHLA From 2031, MSC will handle a minimum volume of 1,000,000 TEUs in Hamburg. Even before the transaction, the shipping line had brought additional liner services to Hamburg. MSC will also locate its new German headquarters for several hundred employees in Hamburg and invest in HHLA. The conditions for completion included merger control clearance of the transaction by the European Commission and the relevant authorities in Georgia, Tunisia and Ukraine, the latter due to the terminal operated by HHLA in Odessa. Strategic partnership In addition, subsidy control approval had to be obtained from the European Commission and foreign trade approval from the competent authorities in Italy, Slovenia, Romania and Denmark. Further steps to implement the strategic partnership will not be taken until the transaction has been completed.
Expert commentary
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Aiming to establish minimum requirements for the cyber-resilience of newbuild vessels and their connected systems, IACS unified requirements (URs) E26 and E27 provide a new benchmark for shipping’s response to its growing exposure to cyber-attacks. Officially in force from 1 July 2024 and broadly welcomed by industry, the new URs represent another step forward in strengthening Maritime's resilience to the evolving cyber threat. However, according to a thought-provoking discussion recently hosted by Edwin Lampert, Executive Editor of Riviera in partnership with Inmarsat Maritime (a Viasat company), shipping companies must still conduct comprehensive risk assessments and implement appropriate mitigation measures. Vessel’s cyber security They ensure all stakeholders are responsible for the vessel’s cyber security Kostas Grivas, Information Security Officer, Angelicoussis Group told the ‘IACS URs E26 & E27: Bridging the gap between regulation and implementation’ session that the URs bring “obvious benefits” such as eliminating “scattered requirements”. They provide “common and crystal-clear ground for auditing and control purposes”, and establish “a solid description of the minimum technical, procedural, and other criteria that govern a vessel’s cyber resilience,” he said. Finally, they ensure “all stakeholders are responsible for the vessel’s cyber security”. Makiko Tani, Deputy Manager, Cyber Security at classification society ClassNK, also acknowledged that the new requirements will “contribute to the visibility of ever-digitalising shipboard networks and their assets”, however, as there is no one-size-fits all cybersecurity solution to all, she continued, “additional controls beyond those specified in the requirements may be necessary, depending on the vessel’s connectivity”. Digital transformation strategy To properly address the cyber risks that a specific vessel is exposed to, she said, “shipowners must conduct a thorough cyber-risk assessment. This relies on a ‘C-level commitment’ to establishing a cyber-security programme that facilitates compliance with URs E26 and E27 and any other future industry requirements while supporting the organisation’s digital transformation strategy”. The importance of looking beyond the IACS URs was also emphasised by Laurie Eve, Chief of Staff, Inmarsat Maritime, who proposed three key areas where companies should “focus and invest not only to meet new requirements but also to go beyond compliance and build good cyber resilience”. Quality management system and standards The firm should focus on training and grasping, managing user rights, investing in a regime system “The first key area, ‘people and culture’, addresses the notion that people are the weakest link in cyber security. According to a 2023 report from the United States Coast Guard as well as findings from Inmarsat’s security operations centres, phishing is the most common initial access vector in cyber-attacks. Investing in people, therefore, should be an absolute no brainer”, commented Eve. Specifically, he continued, a company should focus on training and awareness, managing user privileges, investing in a quality management system and standards such as ISO 27001, assessing suppliers’ risk-management practices, and embedding cyber-security in the organisation’s continuous improvement culture. Risk-management approach The third and final key area according to Eve is an ‘incident response plan’ (IRP). The second key area is ‘network-connected systems and services’. Given the number of attack surfaces on board a vessel and the ever-growing volumes of data moving between systems, many companies lack the time and resources to address all possible weaknesses. The solution, Eve said, is a risk-management approach in which the organisation assesses the risks, sets its risk appetite, and implements security measures according to the costs it is willing and able to bear. The third and final key area according to Eve is an ‘incident response plan’ (IRP). It’s prudent to assume that at some point there will be failures and a breach, an IRP comprises a robust set of contingencies to keep the cost of business disruption to a minimum. It requires investment in backup and data systems as well as regular staff training. “Having a plan is good; training, rehearsing, and improving the plan is better,” explained Eve. Cyber-security requirements While these recommendations apply to all ship owners, Eve acknowledged that there are differences from small to large operators in terms of the budget and internal capability invested in cyber resilience. “Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements which makes it a particularly good fit for “smaller operators without the in-house capability to put together their own solutions”, he said. Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements Combining three powerful components – Fleet Secure Endpoint, Fleet Secure Unified Threat Management, and Fleet Secure Cyber Awareness Training – the Fleet Secure portfolio provides the tools and facilitates a risk-management approach, supporting “compliance with the new requirements” and, more broadly, “increasing cyber resilience”, Eve added.
Demand for ammonia is being transformed by the energy transition. Until recently used as an input for fertiliser and chemical products, new markets for green and blue ammonia are emerging, replacing fossil energy in power generation, steel production and marine fuel. Today some 200m tonnes per annum of ammonia is produced worldwide with 20m tpa transported in LPG carriers. The scale of the emerging and potential demand will see these figures rise; how quickly this can be achieved will determine its take-up as a shipping fuel. New or evolving technology The interest in ammonia stems both from its ‘zero emissions’ when used as fuel and because its production isn’t dependent on biogenic carbon sources. As the global economy transitions away from fossil-based fuels, biogenic carbon – from captured CO2, electrolysis and even waste sources – will be subject to increasing competition from other consumers. Shipyards around the world are considering the advantages that operating on ammonia may provide Accordingly, owners, operators, designers, and shipyards around the world are considering the advantages that operating on ammonia may provide. However, when considering any new or evolving technology, it is important to have a clear understanding of not only the benefits, but the challenges that may be involved. Challenges of ammonia bunkering Biogenic carbon will increasingly replace fossil-based carbon in many of the products in use today in industry and consumer goods. Competition from the energy and aviation sectors will inevitably lead to increased prices but production capacity will need to come from industrial sources rather than biomass harvested for this purpose. ABS has produced a Technical and Operational Advisory on Ammonia Bunkering in response to the need for better understanding by members of the maritime industry. It is intended to provide guidance on the technical and operational challenges of ammonia bunkering, both from the bunker vessel’s perspective (or land-side source) and from the receiving vessel’s perspective. Managing emissions Particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions The carbon emissions from the combustion of ammonia are associated with and dependent on the type and amount of pilot fuel used. The use of biofuel as pilot fuel may further reduce the emissions. In addition, the emissions of sulphur dioxide, heavy metals, hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs) drop to zero (or near zero, depending on the pilot fuel used); and particulate matters (PM) are also substantially reduced compared to conventional fossil fuels. However, particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions, due to the imperfect combustion of ammonia and the use of pilot fuels. These emissions will need to be kept as low as possible by further adjustment and development of the engine technology or using an on-board exhaust gas treatment technology. Currently, hydrogen for ammonia production is typically produced by means of steam methane reforming (SMR) or autothermal reforming (ATR) of natural gas (grey ammonia). If the CO2 emissions from the process of converting natural gas are captured and stored, the ammonia is typically referred to as ‘blue’. Production of blue ammonia Moreover, the production of blue ammonia retains a dependency on fossil fuels. Therefore, ‘green ammonia’, which is produced from hydrogen made from renewable energy sources (green hydrogen), is generally considered to be the end-solution for decarbonisation which leads to a sustainable fuel cycle, while blue ammonia is seen to have an intermediate role. The potential well-to-wake GHG emissions of green ammonia are estimated to be around 91% lower than for grey ammonia, and 85% lower than HFO and MGO. The grey ammonia production network is already well established and global, ensuring easier accessibility across major ports worldwide. Infrastructure and regulation Specific requirements for ammonia bunkering are under discussion by all marine stakeholders This will help green ammonia become readily available for bunkering and distribution once sufficient production and infrastructure are in place. On the other hand, when compared with liquid hydrogen or LNG which can be stored at temperatures of −253°C and −162°C, respectively, liquid ammonia can be stored and transported at −33°C near atmospheric pressure, which allows for easier adaptation of existing fuel infrastructure on ships and at ports. While specific requirements for ammonia bunkering are under discussion by all marine stakeholders, the requirements for shipping ammonia as cargo, including loading and unloading operations, have been established in the marine industry and are covered by the IMO International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) and incorporated in the ABS Rules for Building and Classing Marine Vessels Part 5C Chapter 8 “Vessels Intended to Carry Liquefied Gases in Bulk”. For the use of ammonia as bunker fuel, all segments of the marine industry (including IMO, Class Societies, Port Authorities, and industry agencies) are working to develop requirements and procedures specific to ammonia bunkering operations. Refer to the section “Regulatory Organisation” of this Advisory for the current activities of each marine industry segment. Bunkering Options Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels There are three main methods of bunkering ammonia to ships. Truck-to-ship is the process of transferring ammonia from trucks or truck trailers to a receiving vessel using ammonia as fuel. Typically, the tanks on the truck are pressurised and store ammonia at ambient temperature. To increase bunker capacity and transfer rates, a manifold may be used to connect several trucks simultaneously to supply the receiving vessel. Truck-to-ship transfer operations may provide greater operational flexibility, but at the same time could induce operational restrictions and limitations by the local Authority. Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels, such as container ships, tankers, and bulk carriers, which require large fuel capacities and greater quantities of fuel to be bunkered. Terminal-to-ship bunkering transfers ammonia from an ammonia storage terminal pipeline connected to receiving vessels via a hose assembly or loading arm. Ammonia Safety Ammonia is toxic and reacts violently and explosively with oxidising gases such as chlorine, bromine, acids, and other halogens. When ammonia is inhaled, swallowed or absorbed via skin contact, it reacts with water in the body, producing ammonium hydroxide. Due to these toxicity issues, ammonia is classified as a hazardous substance, with the level and time of exposure being controlled by several national standards. The level of competency needed for each task depends on the role and duties of the individual A combination of both training and operational experience is key to developing the required competencies for ammonia bunkering operations. The level of competency needed for each task depends on the role and responsibilities of the individual. Therefore, the training may vary from person to person. Seafarers on board ships using ammonia fuel should have completed training to attain the abilities that are appropriate to the capacity to be filled, and duties and responsibilities to be taken up. The master, officers, ratings and other personnel on ships using ammonia fuel should be trained and qualified in accordance with regulation V/3 of the STCW Convention and section A-V/3 of the STCW Code, taking into account the specific hazards of ammonia used as fuel. Ship-specific training Ship-specific training is to be reviewed and approved by governing regulatory authorities. The IGF Code provides detailed training requirements for ships that use gases or other low-flashpoint fuels. Ships under the jurisdiction of flag administrations signatory to SOLAS should ensure that seafarers should have the specified certificates of proficiency and the administration shall approve courses and issue endorsements indicating completion of the qualification. All crew must be provided with and be made aware of the emergency procedures and must be trained in any roles and responsibilities they may have. Training, drills and exercises to prepare crews for emergencies are to be provided. Lessons learned from past operations should be incorporated to improve emergency procedures. Procedures should cover all scenarios specific to the ship, type of incident, equipment, and associated areas.
Harbour insights
As the maritime industry accelerates its journey toward decarbonisation, the focus on alternative fuels has intensified. E-methane E-methane, a synthetic gas produced using renewable electricity and carbon capture, is emerging as a promising substitute for conventional natural gas. This innovative fuel offers a way to significantly reduce greenhouse gas emissions while leveraging existing liquefied natural gas (LNG) infrastructure. For maritime professionals, the potential benefits of e-methane extend beyond environmental gains, this fuel could revolutionise ship propulsion, enhance regulatory compliance, and help future-proof operations. Understanding e-methane and its intent E-methane is a synthetic, renewable fuel designed to mimic the properties of conventional methane E-methane, also known as synthetic methane, is a carbon-neutral fuel produced through the electrolysis of water using renewable energy sources, such as wind or solar power. The resulting hydrogen is then combined with carbon dioxide captured from industrial emissions or directly from the atmosphere to produce methane. Unlike fossil-based natural gas, e-methane is a synthetic, renewable fuel designed to mimic the properties of conventional methane while minimising the carbon footprint of maritime operations. Reducing fossil fuel dependency The primary intent behind the adoption of e-methane in the maritime industry is to reduce the sector's dependency on fossil fuels and contribute to global climate goals. The fuel’s carbon-neutral lifecycle, combined with the potential for net-zero operations, makes it an attractive option for ship owners and operators looking to meet increasingly stringent environmental regulations. The technology behind e-methane production The production of e-methane involves two critical technologies: electrolysis and carbon capture. Electrolysis is the process of splitting water molecules into hydrogen and oxygen using electricity. When this electricity comes from renewable sources, the resulting hydrogen is considered “green.” This green hydrogen is then synthesised with captured carbon dioxide to create methane, chemically identical to natural gas. Carbon capture technology This approach creates a closed carbon loop where the CO2 produced during combustion is offset by the CO2 used Carbon capture technology is essential for e-methane production. CO2 can be captured from various industrial processes, such as cement production or power generation, or directly from the atmosphere through direct air capture (DAC) technologies. By using this captured CO2 in the production of e-methane, the process effectively recycles carbon that would otherwise contribute to atmospheric greenhouse gases. This approach creates a closed carbon loop where the CO2 produced during combustion is offset by the CO2 used during fuel synthesis, making e-methane a potentially net-zero option for maritime fuel. Applications in the maritime industry E-methane offers significant advantages to the maritime industry, particularly in ship propulsion. The ability to use e-methane as a drop-in replacement for LNG makes it a highly versatile fuel. Existing LNG-powered vessels and bunkering infrastructure can be utilised with minimal modifications, reducing the need for expensive retrofits or new technologies. This compatibility makes e-methane a practical option for maritime operators who have already invested in LNG-fueled ships. Reduction of methane slip Another key application is in the reduction of methane slip, a phenomenon where unburned methane is released into the atmosphere during combustion. Since e-methane is synthesised using captured carbon, its overall environmental impact is reduced, even when factoring in methane slip. In addition to ship propulsion, e-methane could play a role in port operations. Shore-based power generation, which often relies on fossil fuels, could transition to e-methane, reducing emissions from ports and contributing to the overall sustainability of the maritime supply chain. Benefits for maritime stakeholders Shipowners and operators stand to benefit from compliance with future environmental regulations E-methane offers distinct advantages for various maritime stakeholders. Shipowners and operators stand to benefit from compliance with future environmental regulations while continuing to utilise existing LNG technologies. This provides a clear path to decarbonisation without the need for significant capital investments in new fueling systems. Fuel compatibility Port operators and shippers can also benefit from the widespread adoption of e-methane, as it supports cleaner, more sustainable port environments. The fuel's compatibility with LNG infrastructure ensures that ports will not need to invest in entirely new bunkering systems, making the transition to e-methane economically viable for all parties involved. Engine design and fuel systems For manufacturers, the shift to e-methane could drive innovation in engine design and fuel systems, supporting the development of more efficient and environmentally friendly vessels. Additionally, e-methane aligns with the broader goals of regulatory bodies, which are increasingly pushing for the reduction of greenhouse gas emissions from international shipping. Fostering collaboration across maritime Ship owners, manufacturers, port operators, and regulators can work together to create a seamless transition The adoption of e-methane could foster greater collaboration across the maritime ecosystem. Ship owners, manufacturers, port operators, and regulators can work together to create a seamless transition to this carbon-neutral fuel. By sharing data on fuel performance, operational efficiency, and environmental impact, stakeholders can collectively optimise the use of e-methane across the supply chain. International partnerships Collaboration is particularly important when considering the global nature of the maritime industry. International partnerships can help develop standardised e-methane bunkering facilities and supply chains, ensuring that the fuel is available to vessels regardless of their trade routes. Furthermore, e-methane presents an opportunity for maritime stakeholders to align with broader industry initiatives, such as the International Maritime Organisation’s (IMO) decarbonisation targets. By embracing e-methane, the industry can contribute to global efforts to reduce shipping emissions and comply with upcoming regulations. Challenges facing e-methane Despite its potential, there are some misconceptions surrounding e-methane. One common belief is that e-methane production is too expensive or technologically unfeasible for widespread adoption. While the current production costs of e-methane are higher than those of conventional LNG, advances in renewable energy and carbon capture technologies are expected to bring these costs down over time. Additionally, the existing LNG infrastructure reduces the need for new investments, making e-methane a more cost-effective solution than it might initially appear. E-methane vs. ammonia One of the key challenges e-methane poses to ammonia is its ability to integrate with current systems As the maritime industry evaluates alternative fuels, ammonia has gained significant attention as a zero-carbon option. However, e-methane presents a compelling alternative, especially for operators with existing LNG infrastructure. One of the key challenges e-methane poses to ammonia is its ability to integrate with current systems, offering a more gradual transition to decarbonisation. While ammonia has the potential for significant environmental benefits, its widespread adoption would require new bunkering infrastructure and engines designed to handle its corrosive nature and toxicity. Balance of environmental goals The choice between e-methane and ammonia will ultimately depend on the balance of environmental goals, infrastructure costs, and regulatory pressures. E-methane’s compatibility with existing LNG infrastructure may give it an edge in the near term, but ammonia could emerge as a strong competitor as technology advances and regulations become more stringent. E-methane and the future of sustainable shipping Substituting e-methane for natural gas offers the maritime industry a path toward decarbonisation that leverages existing investments in LNG infrastructure while reducing greenhouse gas emissions. For maritime professionals, the transition to e-methane promises not only compliance with environmental regulations but also operational efficiency and cost savings. As the industry collaborates to scale up production and distribution, e-methane could play a critical role in the future of sustainable shipping, competing with other alternative fuels like ammonia in the race to a zero-carbon future.
The maritime industry, steeped in tradition, is now riding the wave of digital transformation, with big data playing a pivotal role in driving innovation and efficiency. For maritime professionals, the question isn’t whether to embrace big data, but how to maximise its practical benefits. Whether it’s a ship owner, port operator, or related to supply chain logistics, big data has the potential to streamline operations, enhance safety, reduce costs, and bolster profitability. This article explores how the maritime industry can leverage big data for future success and collaboration. Understanding big data and its intent Big data refers to the massive volumes of structured and unstructured data generated by various sources across the maritime ecosystem, from sensors on ships and ports to transactional and environmental data. The intent behind harnessing big data is simple: to analyse and convert this wealth of information into actionable insights. These insights can be applied to improve operational efficiency, enhance decision-making, optimise routes, predict equipment failures, and ultimately, reduce operational costs. In the maritime industry, the use of big data goes beyond basic analytics. It involves predictive modelling, real-time data analysis, and machine learning algorithms to identify patterns and trends that would otherwise remain hidden. For professionals in the sector, this means making informed, data-driven decisions that can help ensure the industry’s long-term success. Practical applications of big data in maritime Ships are equipped with thousands of sensors that monitor the performance of various systems One of the key applications of big data in the maritime world is route optimisation. By analysing historical shipping data, real-time weather forecasts, and ocean conditions, big data can help vessels chart the most efficient routes. This not only reduces fuel consumption and lowers carbon emissions but also ensures faster delivery times, improving overall operational efficiency. Predictive maintenance is another significant area where big data has proven to be invaluable. Ships are equipped with thousands of sensors that monitor the performance of various systems. By analysing the data from these sensors, predictive models can identify potential mechanical failures before they occur, reducing downtime and costly repairs. Maritime professionals benefit from enhanced safety, fewer delays, and more predictable maintenance schedules. In ports, big data is revolutionising logistics. Data-driven insights into cargo movements, storage optimisation, and real-time tracking of containers allow port operators to manage resources more effectively. This can prevent bottlenecks, improve turnaround times, and ensure that supply chains operate more smoothly. The benefits of big data for stakeholders The benefits of big data extend across various maritime stakeholders. Shipowners and operators can see a reduction in operating costs through optimised fuel usage and maintenance schedules, while port operators can better manage infrastructure and resource allocation. Shippers benefit from improved supply chain visibility and more reliable delivery schedules, while insurers can leverage big data to assess risks more accurately and offer better terms. For maritime regulators, big data enables more effective oversight. By analysing data from shipping routes, port activities, and vessel performance, regulatory bodies can develop more accurate policies and guidelines that address both environmental and operational concerns. For maritime manufacturers, big data offers insights into the performance of vessels and equipment, driving innovation and improvements in future designs. Fostering collaboration across the industry Maritime industry develops more effective plans for reducing emissions and meeting regulatory needs One of the most exciting aspects of big data is its potential to foster collaboration among various players in the maritime ecosystem. By sharing data across different stakeholders—such as ship owners, manufacturers, shippers, and port operators—the industry can work together to solve common challenges. For example, shared data can help optimise port congestion by coordinating arrival times, improving fuel efficiency through route sharing, and enhancing safety through real-time weather data. Collaboration is particularly important when it comes to environmental sustainability. By pooling data, the maritime industry can develop more effective strategies for reducing emissions, meeting regulatory requirements, and ensuring compliance with international environmental standards. Furthermore, big data enables a more integrated approach to supply chain management, with all parties having access to the same real-time information, leading to more seamless operations. Dispelling misconceptions about big data Despite its many advantages, there are still some misconceptions about big data in the maritime industry. One common myth is that the adoption of big data requires significant investment in infrastructure and technology, which may seem prohibitive for smaller operators. While the initial costs can be high, the long-term savings in fuel, maintenance, and operational efficiency often outweigh these upfront expenses. Another misconception is that big data will replace human expertise. In reality, big data is a tool that complements, rather than replaces, the knowledge and experience of maritime professionals. It provides insights that enhance decision-making but still relies on human interpretation and action. The industry’s expertise remains crucial in applying data insights in a practical and effective manner. Coordinating big data with other industry initiatives Moreover, big data aligns with the growing emphasis on cybersecurity in maritime operations Big data isn’t a standalone solution but works in conjunction with other industry initiatives, such as the shift toward greener shipping and the use of automation in port operations. It complements efforts to reduce the industry’s carbon footprint by identifying energy-saving opportunities and ensuring that vessels meet environmental regulations. In automation, big data helps ports and shipping companies optimise their operations, improving efficiency and reducing human error. Moreover, big data aligns with the growing emphasis on cybersecurity in maritime operations. As more systems become connected, the potential risks increase. Big data can help detect and mitigate cyber threats by identifying abnormal patterns of behaviour within connected systems, safeguarding both operational data and sensitive cargo information. Conclusion Big data is revolutionising the maritime industry, offering practical solutions that enhance efficiency, reduce costs, and promote collaboration. By embracing this technology, maritime professionals can ensure their operations are safer, more efficient, and more profitable, positioning the industry for long-term success. While there are challenges and misconceptions to address, the benefits of big data are undeniable, making it a crucial tool for maritime professionals seeking to navigate the future of the industry with confidence.
FuelEU Maritime regulations, which will take effect in 2025, will help to encourage investment in research and development (R&D) for the maritime industry. The European Union initiative is aimed at reducing greenhouse gas emissions from ships operating within EU waters. Adopting cleaner alternative fuels By setting increasingly stringent limits on greenhouse gas (GHG) emissions, FuelEU Maritime makes it clear to the industry that traditional high-emission fuels are not sustainable in the long run. The regulation creates a strong market signal for companies to invest in developing or adopting cleaner-burning alternative fuels and related technologies. Promoting the usage of low-carbon fuels Starting in 2025, there will be a gradual decrease in the allowed GHG intensity of fuel used by ships calling at EU ports The regulation will both reduce the greenhouse gas (GHG) intensity of energy used on board ships and promote the uptake of renewable and low-carbon fuels in maritime transport. Starting in 2025, there will be a gradual decrease in the allowed GHG intensity of fuel used by ships calling at EU ports. This reduction will start at 2% in 2025 and increase to 80% by 2050. Beginning in 2030, passenger and container ships at major EU ports will be required to connect to shoreside electricity when berthed for more than two hours. This requirement will expand to all ports with onshore power supply by 2035. Flexibility mechanisms The regulation applies to ships larger than 5,000 Gross Tonnage (GT) entering, leaving, or operating within EU or European Economic Area (EEA) ports. The regulation includes flexibility mechanisms that reward early investment in clean technologies. This can give companies that take the lead in developing clean solutions a competitive advantage in the future. Reducing air pollution The FuelEU Maritime regulation is expected to significantly reduce air pollution and contribute to the EU's climate goals. It's also intended to incentivise the development and adoption of cleaner fuels for the maritime shipping industry. By promoting cleaner fuels and onshore power usage, the regulations aim to create a more sustainable maritime sector, reducing air and water pollution. Research and development The regulation directly increases the demand for low and zero-carbon fuels for ships The regulations will incentivise research and development in renewable and low-carbon fuels like biofuels, hydrogen, and ammonia, which can lead to a wider range of cleaner fuel options for the industry in the long run. The regulation directly increases the demand for low and zero-carbon fuels for ships. As the regulation is phased in, the market for these fuels will grow significantly, making it more attractive for companies to invest in R&D for their production, storage, and distribution. Challenges with electrical infrastructure To comply with onshore power requirements, ports will need to invest in upgrading their electrical infrastructure to handle the demands of large ships. This can benefit port efficiency and contribute to cleaner port operations overall. However, there are challenges. One is the cost. Shifting to cleaner fuels is likely to be more expensive than traditional options like heavy fuel oil. Shipping companies will need to factor in these increased fuel costs and potentially pass them on to consumers. Availability is also an issue. Currently, the infrastructure for supplying cleaner fuels like hydrogen or biofuels is not as extensive as traditional fuels. The regulations may create a temporary strain on the availability of these fuels until production and distribution networks can catch up. While some cleaner fuel options exist, technologies such as using ammonia for large-scale maritime shipping are still under development. Pushing toward a clean future Adapting existing ships to use cleaner fuels or to connect to onshore power may require expensive modifications The industry will need to invest in research and development to ensure the viability and scalability of these new technologies. Adapting existing ships to use cleaner fuels or to connect to onshore power may require expensive modifications, which could pose a financial burden on some shipping companies, particularly those operating older vessels. Overall, the FuelEU Maritime regulations will push the maritime industry towards a cleaner future. Need for investments However, navigating the transition will require significant investments in new technologies, infrastructure upgrades, and ensuring the availability of cleaner fuels. The success of these regulations will depend on collaboration among governments, shipping companies, fuel producers, and technology developers.
Case studies
San Francisco-based maritime technology company - Sofar Ocean announces a partnership with the U.S. Naval Meteorology and Oceanography Command’s (CNMOC) Fleet Weather centres in Norfolk (FWC-N) and San Diego (FWC-SD). Wayfinder platform FWC-N and FWC-SD, the Navy’s two primary weather forecasting centres, are piloting Sofar’s Wayfinder platform to support the routing of naval vessels at sea. The FWCs are utilising Wayfinder to identify safe and efficient route options powered by real-time ocean weather data for Military Sealift Command (MSC) ships. Situational awareness Tim Janssen, Co-Dounder and CEO of Sofar, said, "Wayfinder will empower the Navy to enhance situational awareness at sea and leverage data-driven optimisation to continuously identify safe and efficient routing strategies." He adds, "Powered by our real-time ocean weather sensor network, Wayfinder will help the Navy scale its routing operations to support a heterogeneous fleet operating in conditions made more extreme by the effects of climate change." CRADA The platform displays real-time observational data from Sofar’s global network of Spotter buoys The Navy is evaluating Wayfinder under CNMOC and Sofar’s five-year Cooperative Research and Development Agreement (CRADA) signed in July 2023. Wayfinder reduces manual tasks for forecasters and routers by automatically generating a forecast along a vessel’s route. The platform displays real-time observational data from Sofar’s global network of Spotter buoys to reduce weather uncertainty for route optimisation, and predict unwanted vessel motions during a voyage. Real-time wave and weather observations The availability of accurate real-time wave and weather observations helps Captains and shoreside personnel validate forecast models and examine multiple route options more efficiently, streamlining a historically complex and arduous process. Lea Locke-Wynn, Undersea Warfare Technical Lead for CNMOC’s Future Capabilities Department, said, "A key focus area for the Naval Oceanography enterprise is fostering a culture of innovation through collaboration with our commercial partners." Vessel-specific guidance Lea Locke-Wynn adds, "Our ongoing CRADA with Sofar Ocean is a perfect example of how our partnerships can leverage the leading edge in industry to further Department of Defence operations." As the number of naval vessels at sea, including experimental and autonomous ships, continues to increase, forecasters and routers will have less time to spend manually producing vessel-specific guidance. Automated forecast-on-route guidance More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks Wayfinder helps fill this operational gap, enabling FWC-N and FWC-SD to more efficiently support a large fleet in real-time with automated forecast-on-route guidance. More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks that require their unique expertise. Streamlined decisions Captain Erin Ceschini, Commanding Officer, FWC-SD, stated, "By using Wayfinder, we’re able to better visualise our ships’ routes, and make safer and more streamlined decisions on route, speed, and heading." Captain Erin Ceschini adds, "Wayfinder has the potential to be a critical component of our day-to-day operations and a key driver of safe routing as we contend with an increasingly unpredictable weather landscape."
The accuracy of AIS data used to track ship movements is vital for the analysis of vessel performance in areas such as fuel consumption. OrbitMI has therefore collaborated with Maritime Data on a joint project to enhance the screening of AIS data providers so it can deliver the best quality data for clients. Orbit vessel performance platform “We are continuously striving to optimise data inputs for users of our newly upgraded Orbit vessel performance platform to improve business decision-making." "With this goal in mind, we engaged Maritime Data as a trustworthy partner to contribute its specialist expertise in data procurement for the industry,” says OrbitMI’s Chief Marketing Officer David Levy. Assuring the quality of data inputs Maritime Data supports companies in the maritime ecosystem from concept to contract Maritime Data is a UK-based start-up founded in 2022 by Co-Founders Rory Proud and James Littlejohn with a mission to address the difficulties in sourcing, evaluating, and buying maritime data by acting as a specialised intermediary between buyer and supplier. As a data broker, Maritime Data supports companies in the maritime ecosystem from concept to contract. This enables clients to quickly understand all available solutions relevant to their requirements, evaluate comparable options, and contract with their suppliers of choice. All to minimise the effort required and give time back to the people building solutions needed to tackle the industry's biggest challenges. Buying data is made easier. Accurate customer service Backed by more than 15 years of experience in the sector, Maritime Data has built up an extensive partner network of over 50 maritime intelligence suppliers and 200-plus product offerings in areas such as vessel tracking, emissions calculation, seaborne cargo flows, risk and compliance, port activity, trade statistics, weather, and vessel ownership. “The quality of data being inputted into any model, process, or technology will have a meaningful impact on output,” explains Maritime Data’s Co-Founder James Littlejohn. "It is therefore essential for maritime technology companies to meaningfully evaluate all of their data inputs to ensure their solution provides the most accurate service for their customers." Tackling sourcing challenges Real-time data generated by the AIS is considered the X-axis for any evaluation of vessel operations The joint project has focused on tackling the challenges of acquiring the right AIS data arising from discrepancies in datasets offered by various vendors that make assessment and evaluation difficult for data buyers. Real-time data generated by the Automatic Identification System (AIS) is considered the X-axis for any evaluation of vessel operations and is a fundamental data layer for performance monitoring as it shows position, course, and speed, which can be combined with weather data to optimise operations, according to James Littlejohn. However, AIS is extremely data-heavy with hundreds of millions of data points being generated by thousands of vessels across the globe every day, which requires commensurately massive computational resources to ingest and analyse this data. New vendor evaluation protocol Under the joint project, Maritime Data conducted a comparative assessment of four leading AIS data providers using a new, specially developed evaluation protocol to ascertain the quality of their respective offerings based on carefully designed criteria. Maritime Data was able to take samples of a week of AIS data from each of the four providers and measure each dataset against various benchmarks provided by OrbitMI to help determine the coverage, accuracy and frequency of the respective feeds. A segment of these samples was then taken and split out over 80 different geolocations that were visualised as polygons on a map to show geographical coverage. Heavyweight analytics Independent validation of the supplier selection process enabled this to be conducted more quickly James Littlejohn points out that conducting this process of comparison and evaluation with such vast amounts of data would entail a lot of time and resources for a maritime technology firm such as OrbitMI, causing opportunity cost, while it took Maritime Data about a month to complete the analysis and this time is likely to be shortened in future as the process becomes more efficient. He says that independent validation of the supplier selection process enabled this to be conducted more quickly and without bias in favour of any one data vendor. “The outcome of the process was exactly as we expected and piloting this tool with OrbitMI has given us a springboard for further development and application of the selection protocol. This enabled OrbitMI to proceed with a decision on AIS sourcing secure in the knowledge that the data would fulfill the needs of its customers,” James Littlejohn says. Selecting the ideal AIS data provider At the end of the process, OrbitMI selected Lloyd's List Intelligence as its AIS data provider. “Lloyd's List Intelligence has been a long-time and valued partner of ours,” says Ali Riaz, OrbitMI's CEO. “The quality and versatility of their data offerings, assurances of data accuracy, customer service, and commitment to collaboration compared to the other offerings were unbeatable.” This decision aligns with Lloyd's List Intelligence's strategic vision for the industry. A collaborative, connected approach Tom Richmond, Head of Software & Technology Sales at Lloyd's List Intelligence, elaborates, “Working with innovators like OrbitMI is part of our strategic plan to help the shipping industry move beyond siloed thinking and kick-start a more collaborative, connected approach to integrating seaborne trade in the global supply chain." "We’re happy to support innovation with high-quality products at a price point that stimulates collaboration in the sector.” AIS data quality assurance OrbitMI’s David Levy concludes, “This project demonstrates we are prioritising data quality for our clients by harnessing the power of partnership with a major player." "The AIS data quality assurance process piloted by OrbitMI with Maritime Data will benefit users of the new Orbit platform by ensuring optimised and reliable data inputs covering the global fleet.”
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use
Korea Marine Transport Company Ship Management (KMTC SM) has reported annual fuel savings worth approximately US$540,000 in total after installing Accelleron’s digital engine optimisation solution Tekomar XPERT on 12 Panamax vessels. The fuel savings enabled KMTC SM to reduce its CO2 emissions by about 4,200 tons. Tekomar XPERT delivers engine optimisation recommendations based on thermodynamic insights that aim to bring engines back to the operating performance achieved at “new” conditions. The solution can be applied to any engine and turbocharger make. KMTC SM followed the advisory from Tekomar XPERT, tracked engine performance and benchmarked engines and vessels through Tekomar XPERT’s web portal (Loreka). Carbon Intensity Indicator (CII) ratings The reduced emissions will translate to better CII ratings and lower exposure to carbon pricing KMTC Ship Management General Manager of Environmental Technology, Jin-Seob Lee, said: “Based on the big savings on fuel cost and emission reduction, we aim to install Tekomar XPERT on our remaining 16 self-managed vessels, and will be recommending its installation on 22 other vessels managed by third parties.” Accelleron anticipates that KMTC’s fuel bill will be reduced by around US$1.3 million a year when Tekomar XPERT is deployed across all 50 vessels. The reduced emissions will translate to better Carbon Intensity Indicator (CII) ratings and lower exposure to carbon pricing, including the EU Emissions Trading System, which will apply to shipping from 2024. KMTC SM’s own measurements KMTC SM was able to track improvements in performance thanks to intuitive indicators and actionable insight from Tekomar XPERT. The reduced fuel consumption at the end of the 12-month period highlighted a significant increase in vessel performance over the year. This was verified by KMTC SM’s own measurements. Accelleron Global Head of Sales & Operations, Shailesh Shirsekar, said: “Efficient engines are one of the keys to reducing fuel costs, emissions and carbon price exposure, enabling optimisation without impact on vessel operation. With simple guidance from Tekomar XPERT, ship operators can ensure that the engines are running at their very best, laying the foundation for lower lifecycle costs as well as regulatory compliance.”
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.