Navigation
Guy Hindley has been appointed as the new Chairman of the Baltic Exchange Council, with effect from 1 January 2025, following the leadership of Lord Jeffrey Mountevans who has held the position for the past two years. Guy Hindley, who has served on the Baltic Exchange Council since January 2019, has a long and distinguished career in the maritime sector, including his role as Managing Partner of Dry Cargo division at Howe Robinson, where he has been a key figure since for nearly four decades.&n...
ABS Wavesight™, the ABS-affiliated Software-as-a-Service company, is pleased to announce that UNI-FLEET SDN BHD, a specialised shipping company operating tanker vessels primarily focused on the transportation of ammonia across Asia, has chosen to implement Nautical Systems (NS) Maintenance Manager and Purchasing Manager modules to revolutionise their maintenance and inventory processes. Integration of NS Maintenance “We’re excited for the opportunity to support UNI-FLEET with...
Watson Farley & Williams (WFW) advised Höegh Evi Ltd. (Höegh Evi) on the acquisition of a 50% stake in its shareholder Larus Holding (Larus) by funds managed by Igneo Infrastructure Partners (Igneo). Transaction details Larus, which is the 100% owner of Höegh Evi, is currently jointly 50/50 owned by Aequitas Limited (a holding company of the Høegh Family who will retain their existing stake) and funds managed by Morgan Stanley Infrastructure Partners. The trans...
Acoustic Doppler Current Profiler (ADCP) from Teledyne RD Instruments (RDI) has been chosen for a 63-foot hybrid catamaran for the Orange County Sanitation District (OC San.gov) built by All American Marine (AAM), a pioneer in constructing vessels with hybrid and electric propulsion systems. The vessel, designed to support ocean sampling and scientific research, will be an innovative hybrid-powered boat, contributing to environmental sustainability in marine operations. Utility optim...
Kongsberg Digital is proud to announce an important new simulator contract with Noble Corporation, one of the world’s pioneering offshore drilling companies, headquartered in Houston, Texas USA. DP simulators The contract includes the delivery of state-of-the-art navigation, engine, and dynamic positioning (DP) simulators based on Kongsberg Maritime’s market-pioneering K-Pos DP system. The simulators will be tailored and integrated with Kongsberg Maritime’s Riser Monitoring...
Pioneering marine and protective coatings brand International®, part of AkzoNobel, celebrated its 35th year anniversary in China during an event in Shanghai in October 2024. First registered and founded in 1989 in partnership with Shanghai Huayi Fine Chemicals and China State Shipbuilding Equipment & Materials Corporation Ltd, International Paint of Shanghai Co., Ltd. has since established three production facilities in China, 17 distribution centres, and employs over 100 technical serv...
News
LGE business has been awarded a contract to deliver six cargo handling and fuel gas supply systems for Ultra Large Ethane Carriers in China. The new supersized ships have 50% more capacity than existing Very Large Ethane Carriers (VLEC), and at 150,000 m3, are a world first of this size. Transportation of liquefied gas The ships, being built at the Jiangnan Shipyard in China, will be fitted with cascade reliquefication plants to manage the Boil Off Gas (BOG), with the contract signalling a continued wave of demand for the globally sought technology in a buoyant market for the transportation of liquefied gas. Neale Campbell, Managing Director of Babcock’s LGE business, said: “The development of these ships is a milestone moment as the industry enters the new era of Ultra Large Ethane Carriers. We are proud that our pioneering-edge technology is an intrinsic part of these game-changing vessels, with an integrated reliquefaction system and fuel gas supply system providing fuel to the ship’s main engine – helping to support a net-zero future.” LGE’s intellectual property portfolio The LGE business saw a record order intake of more than £300 million in the first half of 2024 The integrated system comprises of LGE’s SuperCooler™ and ecoETHN™ technologies – both part of LGE’s intellectual property portfolio. SuperCooler™ improves plant efficiency by increasing reliquefaction capacity whilst reducing energy consumption, while ecoETHN™ integrates the reliquefaction plant with the fuel gas supply system, utilising methane-rich Boil Off Gas as fuel for the main engine and auxiliary power generators. The LGE business saw a record order intake of more than £300 million in the first half of 2024, with 63 contracts from international shipyard customers driven by major LNG projects in the Middle East and growing demand in China. ecoSMRT® for LNG reliquefaction Ongoing technology development by LGE this year has already achieved eight patent applications, two patents granted, and eleven trademarks granted across the portfolio range, including for LNG, Ammonia, and CO2. Sales have also been strong across the technology-rich portfolio, including the ecoSMRT® for LNG reliquefaction, ecoETHN® for Ethane Cargo Handling Systems, and 18 Ammonia ship Cargo Handling Systems. The success of the LGE business was also formally recognised by the award of King’s Award for Enterprise in the Innovation category.
U-Boat Worx is proud to be part of the ground-breaking HEXA, a 50-metre support vessel conversion that redefines the superyacht support experience. Born from hand-drawn sketches as a floating helipad, HEXA has transformed into a striking concept that seamlessly blends robust utility with high-end sophistication, setting a new benchmark for support vessels. With its distinctive hexagonal theme, extended entertainment decks, swim platform, and bold graphics, HEXA combines form and function in a way that stands out in any marina or on the open seas. U-Boat Worx C-Researcher 3 submarine The vessel’s rugged nature is improved by its hexagonal aesthetic, making it as striking as it is functional Designed for active owners who demand the ultimate in adventure and luxury, HEXA features a carefully curated selection of premium toys and equipment, including the U-Boat Worx C-Researcher 3 submarine, which allows guests to explore the ocean depths with unparalleled style and safety. HEXA’s design is an homage to adventure. The vessel’s rugged character is enhanced by its hexagonal aesthetic, making it as visually striking as it is functional. From underwater exploration to exhilarating on-land excursions, HEXA offers a seamless transition between the superyacht lifestyle and high-adrenaline activities. U-Boat Worx C-Researcher 3: Elevating exploration At the heart of HEXA’s toy collection is the U-Boat Worx C-Researcher 3 submarine, a state-of-the-art submersible that opens up the underwater world to guests. With its unmatched capabilities and sleek design, the C-Researcher is the ideal complement to HEXA’s adventurous spirit. HEXA is more than just a support boat - it’s the ultimate vessel for exploration, entertainment, and adventure, designed for owners who seek to push boundaries and create unforgettable experiences on the water and beyond.
Leask Marine is proud to continue its partnership with Morlais, a globally renowned tidal energy developer, in the deployment of the Marinus LiDAR buoy off the coast of Holyhead, Wales. This advanced buoy, equipped with cutting-edge sonar, acoustic monitoring, and video technology, will play a crucial role in monitoring marine wildlife and environmental conditions around the Morlais tidal energy project. Deployment of the Marinus buoy The data collected by the Marinus buoy will provide valuable insights into the behaviour and movement of marine mammals and seabirds, enabling Morlais to update its Environmental Monitoring and Management Plan (EMMP). This commitment to environmental stewardship is essential for ensuring the sustainable development of tidal energy projects. Leask Marine's expertise in marine operations and commitment to safety and efficiency have been instrumental in the successful deployment of the Marinus buoy. Marinus buoy's current mission They are excited to be part of this important initiative, which will not only benefit the Morlais project, but also contribute to the global understanding of the interactions between tidal energy installations and the marine environment. The findings from the Marinus buoy's current mission will be shared with tidal energy projects worldwide, underscoring the importance of collaboration and knowledge sharing in this growing industry. Leask Marine is committed to working with partners like Morlais to advance the development of sustainable and environmentally responsible tidal energy solutions.
Rolls-Royce held a successful F130 engine Critical Design Review (CDR), clearing the way for final development, test, and production efforts to proceed and taking another step towards delivering the upgraded B-52J to the United States Air Force. This milestone is the culmination of over two years of detailed design work and close collaboration between teams at Rolls-Royce, the Air Force and Boeing. The engine testing program is on track to begin altitude testing in February 2025 at the U.S. Air Force Arnold Engineering Development Complex in Tullahoma, Tennessee. Partnership with the U.S. Air Force and Boeing Candice Bineyard, Director, Early Life Cycle & Naval Programs – Defense, said: "We’re extremely proud to have delivered the F130 CDR milestone on-time for the B-52J, and grateful for our continued partnership with the U.S. Air Force and Boeing." Candice Bineyard adds, "Throughout the detailed design phase, our teams have executed a rigorous process in close collaboration with our partners. We’re excited to start the production work to deliver this incredible and highly reliable engine for the B-52J." Rolls-Royce’s Indianapolis facilities Sea-level testing gathered vital act data by driving the initial software out for the engine in Test Cell 114 Rolls-Royce also recently completed the first phases of F130 sea-level tests in its Indianapolis facilities and wrapped up Rapid Twin Pod Tests at NASA Stennis Space Centre this summer. Sea-level testing gathered critical performance data by running the initial software release for the engine in Test Cell 114. The test cell was recently revamped as part of a $1 billion investment in modernising Rolls-Royce’s Indianapolis facilities to deliver innovation and advanced manufacturing for the Air Force and other customers with American labour. Integration of the F130 engine The F130 engines will be manufactured, assembled and tested in Indianapolis, Rolls-Royce’s largest production facility in the U.S. Testing at NASA Stennis marked the first time F130 engines were tested in the dual-pod engine configuration of the B-52 aircraft. Rapid Twin Pod Tests played a key role in validating Rolls-Royce’s analytical predictions, further de-risking the integration of the F130 engine onto the B-52J and meeting test goals.
In a recent case underscoring the essential nature of precise cost estimation in maritime logistics, ITIC (International Transport Intermediaries Club) has settled a US$140,000 claim resulting from an error in calculating port charges. The incident involved a South American grain shipment where the pool manager’s use of outdated cost estimates for port fees led to a substantial financial discrepancy. A pool manager organised a ship to load a cargo of grain at a South American port. Using a Final Disbursement Account (FDA) from a previous ship's call at the same port, the manager estimated the port costs at US$80,000. This figure was communicated to the pool owner and incorporated into the freight calculations for the voyage. Ship for the current voyage The actual port charges escalated to US$220,000, vastly exceeding the initial estimate Unbeknownst to the manager, the ship assigned for the current voyage was 40,000 metric tonnes larger than the previous one, placing it into a higher pricing bracket under the terminal's rules. Additionally, its deeper draught necessitated a second pilot, further inflating costs. Consequently, the actual port charges escalated to US$220,000, vastly exceeding the initial estimate. The unexpected extra cost of US$140,000 was not included in the freight, resulting in a significant financial shortfall for the pool owner. Planning in maritime logistics Upon investigation, ITIC recognised that the pool manager had failed to update the port cost estimates to reflect the specifications and requirements of the larger ship. Accepting responsibility for the oversight, ITIC settled the claim in full, compensating the pool owner for the unforeseen expenses. Mark Brattman of ITIC commented: “This incident serves as a stark reminder of the critical importance of precise cost estimation and diligent planning in maritime logistics. The substantial shortfall due to inaccurate port charge estimates underscores the risks involved and the necessity of aligning cost calculations with ship specifications to avoid unforeseen financial impacts.”
Wärtsilä Gas Solutions, part of technology group - Wärtsilä, continues to strengthen its market-pioneering position in small-scale LNG applications with its latest contract. A new 12,500 cbm LNG bunkering vessel is being built at the Nantong CIMC Sinopacific Offshore & Engineering shipyard in China, for global energy company - Vitol. It will feature Wärtsilä Cargo Handling and Fuel Gas Supply systems, the order for which was booked by Wärtsilä in Q4, 2024. Wärtsilä’s BOG management Wärtsilä’s ability to engineer, design and deliver a complete system was central to the contract award Wärtsilä’s ability to engineer, design and deliver a complete system, including the Boil-Off Gas (BOG) management, integrated fuel supply, custody transfer and bunkering transfer systems, was central to the contract award. Wärtsilä is extremely experienced in solutions for small-scale LNG applications. This track record, coupled with the company’s proven ability to engineer, design and deliver, was central to the contract award. Wärtsilä cargo handling systems “LNG is today an important marine fuel and is rapidly becoming the preferred choice for owners and operators seeking more sustainable fuel options. The market for LNG bunkering vessels is increasing in line with this trend, and we have established a pioneering position in supplying modern and reliable systems that optimise overall cargo handling efficiency for such vessels,” commented Richie Zhu, Sales Manager, Wärtsilä Gas Solutions, China. Wärtsilä has a long-standing relationship with Nantong CIMC Sinopacific Offshore & Engineering, and has supplied cargo handling systems for a number of LNG, LPG, ethane/ethylene, and multi-gas carriers built by the yard.
Expert commentary
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Demand for ammonia is being transformed by the energy transition. Until recently used as an input for fertiliser and chemical products, new markets for green and blue ammonia are emerging, replacing fossil energy in power generation, steel production and marine fuel. Today some 200m tonnes per annum of ammonia is produced worldwide with 20m tpa transported in LPG carriers. The scale of the emerging and potential demand will see these figures rise; how quickly this can be achieved will determine its take-up as a shipping fuel. New or evolving technology The interest in ammonia stems both from its ‘zero emissions’ when used as fuel and because its production isn’t dependent on biogenic carbon sources. As the global economy transitions away from fossil-based fuels, biogenic carbon – from captured CO2, electrolysis and even waste sources – will be subject to increasing competition from other consumers. Shipyards around the world are considering the advantages that operating on ammonia may provide Accordingly, owners, operators, designers, and shipyards around the world are considering the advantages that operating on ammonia may provide. However, when considering any new or evolving technology, it is important to have a clear understanding of not only the benefits, but the challenges that may be involved. Challenges of ammonia bunkering Biogenic carbon will increasingly replace fossil-based carbon in many of the products in use today in industry and consumer goods. Competition from the energy and aviation sectors will inevitably lead to increased prices but production capacity will need to come from industrial sources rather than biomass harvested for this purpose. ABS has produced a Technical and Operational Advisory on Ammonia Bunkering in response to the need for better understanding by members of the maritime industry. It is intended to provide guidance on the technical and operational challenges of ammonia bunkering, both from the bunker vessel’s perspective (or land-side source) and from the receiving vessel’s perspective. Managing emissions Particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions The carbon emissions from the combustion of ammonia are associated with and dependent on the type and amount of pilot fuel used. The use of biofuel as pilot fuel may further reduce the emissions. In addition, the emissions of sulphur dioxide, heavy metals, hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs) drop to zero (or near zero, depending on the pilot fuel used); and particulate matters (PM) are also substantially reduced compared to conventional fossil fuels. However, particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions, due to the imperfect combustion of ammonia and the use of pilot fuels. These emissions will need to be kept as low as possible by further adjustment and development of the engine technology or using an on-board exhaust gas treatment technology. Currently, hydrogen for ammonia production is typically produced by means of steam methane reforming (SMR) or autothermal reforming (ATR) of natural gas (grey ammonia). If the CO2 emissions from the process of converting natural gas are captured and stored, the ammonia is typically referred to as ‘blue’. Production of blue ammonia Moreover, the production of blue ammonia retains a dependency on fossil fuels. Therefore, ‘green ammonia’, which is produced from hydrogen made from renewable energy sources (green hydrogen), is generally considered to be the end-solution for decarbonisation which leads to a sustainable fuel cycle, while blue ammonia is seen to have an intermediate role. The potential well-to-wake GHG emissions of green ammonia are estimated to be around 91% lower than for grey ammonia, and 85% lower than HFO and MGO. The grey ammonia production network is already well established and global, ensuring easier accessibility across major ports worldwide. Infrastructure and regulation Specific requirements for ammonia bunkering are under discussion by all marine stakeholders This will help green ammonia become readily available for bunkering and distribution once sufficient production and infrastructure are in place. On the other hand, when compared with liquid hydrogen or LNG which can be stored at temperatures of −253°C and −162°C, respectively, liquid ammonia can be stored and transported at −33°C near atmospheric pressure, which allows for easier adaptation of existing fuel infrastructure on ships and at ports. While specific requirements for ammonia bunkering are under discussion by all marine stakeholders, the requirements for shipping ammonia as cargo, including loading and unloading operations, have been established in the marine industry and are covered by the IMO International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) and incorporated in the ABS Rules for Building and Classing Marine Vessels Part 5C Chapter 8 “Vessels Intended to Carry Liquefied Gases in Bulk”. For the use of ammonia as bunker fuel, all segments of the marine industry (including IMO, Class Societies, Port Authorities, and industry agencies) are working to develop requirements and procedures specific to ammonia bunkering operations. Refer to the section “Regulatory Organisation” of this Advisory for the current activities of each marine industry segment. Bunkering Options Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels There are three main methods of bunkering ammonia to ships. Truck-to-ship is the process of transferring ammonia from trucks or truck trailers to a receiving vessel using ammonia as fuel. Typically, the tanks on the truck are pressurised and store ammonia at ambient temperature. To increase bunker capacity and transfer rates, a manifold may be used to connect several trucks simultaneously to supply the receiving vessel. Truck-to-ship transfer operations may provide greater operational flexibility, but at the same time could induce operational restrictions and limitations by the local Authority. Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels, such as container ships, tankers, and bulk carriers, which require large fuel capacities and greater quantities of fuel to be bunkered. Terminal-to-ship bunkering transfers ammonia from an ammonia storage terminal pipeline connected to receiving vessels via a hose assembly or loading arm. Ammonia Safety Ammonia is toxic and reacts violently and explosively with oxidising gases such as chlorine, bromine, acids, and other halogens. When ammonia is inhaled, swallowed or absorbed via skin contact, it reacts with water in the body, producing ammonium hydroxide. Due to these toxicity issues, ammonia is classified as a hazardous substance, with the level and time of exposure being controlled by several national standards. The level of competency needed for each task depends on the role and duties of the individual A combination of both training and operational experience is key to developing the required competencies for ammonia bunkering operations. The level of competency needed for each task depends on the role and responsibilities of the individual. Therefore, the training may vary from person to person. Seafarers on board ships using ammonia fuel should have completed training to attain the abilities that are appropriate to the capacity to be filled, and duties and responsibilities to be taken up. The master, officers, ratings and other personnel on ships using ammonia fuel should be trained and qualified in accordance with regulation V/3 of the STCW Convention and section A-V/3 of the STCW Code, taking into account the specific hazards of ammonia used as fuel. Ship-specific training Ship-specific training is to be reviewed and approved by governing regulatory authorities. The IGF Code provides detailed training requirements for ships that use gases or other low-flashpoint fuels. Ships under the jurisdiction of flag administrations signatory to SOLAS should ensure that seafarers should have the specified certificates of proficiency and the administration shall approve courses and issue endorsements indicating completion of the qualification. All crew must be provided with and be made aware of the emergency procedures and must be trained in any roles and responsibilities they may have. Training, drills and exercises to prepare crews for emergencies are to be provided. Lessons learned from past operations should be incorporated to improve emergency procedures. Procedures should cover all scenarios specific to the ship, type of incident, equipment, and associated areas.
Global transportation networks are becoming increasingly interconnected, with digital systems playing a crucial role in ensuring the smooth operation of ports and supply chains. However, this reliance on technology can also create vulnerabilities, as demonstrated by the recent ransomware attack on Nagoya Port. As Japan's busiest shipping hub, the port's operations were brought to a standstill for two days, highlighting the potential for significant disruption to national economies and supply chains. Transportation sector The attack began with the port's legacy computer system, which handles shipping containers, being knocked offline. This forced the port to halt the handling of shipping containers that arrived at the terminal, effectively disrupting the flow of goods. The incident was a stark reminder of the risks associated with the convergence of information technology (IT) and operational technology (OT) in ports and other critical infrastructures. This is not an isolated incident, but part of a broader trend of escalating cyber threats targeting critical infrastructure. The transportation sector must respond by bolstering its defences, enhancing its cyber resilience, and proactively countering these threats. The safety and efficiency of our transportation infrastructure, and by extension our global economy, depend on it. Rising threat to port security and supply chains XIoT, from sensors on shipping containers to automatic cranes, are vital to trendy port functions OT, once isolated from networked systems, is now increasingly interconnected. This integration has expanded the attack surface for threat actors. A single breach in a port's OT systems can cause significant disruption, halting the movement of containers and impacting the flow of goods. This is not a hypothetical scenario, but a reality that has been demonstrated in recent cyberattacks on major ports. Adding another layer of complexity is the extended Internet of Things (XIoT), an umbrella term for all cyber-physical systems. XIoT devices, from sensors on shipping containers to automated cranes, are now integral to modern port operations. These devices are delivering safer, more efficient automated vehicles, facilitating geo-fencing for improved logistics, and providing vehicle health data for predictive maintenance. XIoT ecosystem However, the XIoT ecosystem also presents new cybersecurity risks. Each connected device is a potential entry point for cybercriminals, and the interconnected nature of these devices means that an attack on one, which can move laterally and can have a ripple effect throughout the system. The threat landscape is evolving, with cybercriminals becoming more sophisticated and their attacks more damaging with a business continuity focus. The growing interconnectivity between OT and XIoT in port operations and supply chains is also presenting these threat actors with a greater attack surface. Many older OT systems were never designed to be connected in this way and are unlikely to be equipped to deal with modern cyber threats. Furthermore, the increasing digitisation of ports and supply chains has led to a surge in the volume of data being generated and processed. This data, if not properly secured, can be a goldmine for cybercriminals. The potential for data breaches adds another dimension to the cybersecurity challenges facing the transportation sector. Role of cyber resilience in protecting service availability Cyber resilience refers to organisation's ability to prepare for, respond to, and recover from threats As the threats to port security and supply chains become increasingly complex, the concept of cyber resilience takes on a new level of importance. Cyber resilience refers to an organisation's ability to prepare for, respond to, and recover from cyber threats. It goes beyond traditional cybersecurity measures, focusing not just on preventing attacks, but also on minimising the impact of attacks that do occur and ensuring a quick recovery. In the context of port operations and supply chains, cyber resilience is crucial. The interconnected nature of these systems means that a cyberattack can have far-reaching effects, disrupting operations not just at the targeted port, but also at other ports and throughout the supply chain. A resilient system is one that can withstand such an attack and quickly restore normal operations. Port operations and supply chains The growing reliance on OT and the XIoT in port operations and supply chains presents unique challenges for cyber resilience. OT systems control physical processes and are often critical to safety and service availability. A breach in an OT system can have immediate and potentially catastrophic physical consequences. Similarly, XIoT devices are often embedded in critical infrastructure and can be difficult to patch or update, making them vulnerable to attacks. Building cyber resilience in these systems requires a multi-faceted approach. It involves implementing robust security measures, such as strong access controls and network segmentation, to prevent attacks. It also involves continuous monitoring and detection to identify and respond to threats as they occur. But perhaps most importantly, it involves planning and preparation for the inevitable breaches that will occur, ensuring that when they do, the impact is minimised, and normal operations can be quickly restored. Building resilience across port security and supply chains In the face of cyber threats, the transport sector must adopt a complete method of cybersecurity In the face of escalating cyber threats, the transportation sector must adopt a comprehensive approach to cybersecurity. This involves not just implementing robust security measures, but also fostering a culture of cybersecurity awareness and compliance throughout the organisation. A key component of a comprehensive cybersecurity strategy is strong access controls. This involves ensuring that only authorised individuals have access to sensitive data and systems. It also involves implementing multi-factor authentication and regularly reviewing and updating access permissions. Strong access controls can prevent unauthorised access to systems and data, reducing the risk of both internal and external threats. Network segmentation Network segmentation is another crucial measure. By dividing a network into separate segments, organisations can limit the spread of a cyberattack within their network. This can prevent an attack on one part of the network from affecting the entire system. Network segmentation also makes it easier to monitor and control the flow of data within the network, further enhancing security. Regular vulnerability assessments and patch management are also essential. Vulnerability assessments involve identifying and evaluating potential security weaknesses in the system, while patch management involves regularly updating and patching software to fix these vulnerabilities. These measures can help organisations stay ahead of cybercriminals and reduce the risk of exploitation. EU’s NIS2 Directive EU’s NIS2 Directive came into effect, and member states have until October 2024 to put it into law The transportation sector must also be prepared for greater legislative responsibility in the near future. The EU’s NIS2 Directive recently came into effect, and member states have until October 2024 to put it into law. The Directive aims to increase the overall level of cyber preparedness by mandating capabilities such as Computer Security Incident Response Teams (CSIRTs). Transport is among the sectors labelled as essential by the bill, meaning it will face a high level of scrutiny. Getting to grips with the complexities of XIoT and OT integration will be essential for organisations to achieve compliance and avoid fines. Global transportation infrastructure Finally, organisations must prepare for the inevitable breaches that will occur. This involves developing an incident response plan that outlines the steps to be taken in the event of a breach. It also involves regularly testing and updating this plan to ensure its effectiveness. A well-prepared organisation can respond quickly and effectively to a breach, minimising its impact and ensuring a quick recovery. In conclusion, mastering transportation cybersecurity requires a comprehensive, proactive approach. It involves implementing robust technical measures, fostering a culture of cybersecurity awareness, and preparing for the inevitable breaches that will occur. By taking these steps, organisations can enhance their cyber resilience, protect their critical operations, and ensure the security of our global transportation infrastructure.
Harbour insights
Augmented reality (AR) is making waves across various industries, and maritime is no exception. For maritime professionals, AR offers practical, real-time solutions that enhance safety, optimise operations, and improve decision-making both at sea and onshore. Whether it’s helping crews navigate complex environments, assisting in ship maintenance, or providing on-the-job training, AR’s ability to blend digital information with the physical world is proving invaluable in the fast-paced and challenging maritime environment. This article explores the benefits, applications, and potential of AR in the maritime industry. Understanding AR and its intent Augmented reality (AR) overlays digital content—such as data, graphics, and 3D models—onto the real-world environment, enhancing users’ perception of their surroundings. Unlike virtual reality (VR), which creates entirely simulated environments, AR supplements the real world with additional information that can be viewed through devices like smartphones, tablets, or AR glasses. Accuracy, efficiency, and safety The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment In the maritime context, AR intends to enhance the accuracy, efficiency, and safety of various operations. By providing real-time data and visuals, AR allows maritime professionals to make better-informed decisions, whether they’re navigating a vessel through busy waters, inspecting machinery, or managing cargo in a port. The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment, reducing risks, preventing errors, and increasing operational efficiency. AR applications in maritime operations One of the most significant applications of AR in the maritime industry is in navigation. AR can assist ship officers by overlaying critical navigation data—such as chart information, vessel traffic, weather conditions, and obstacles—directly onto the real-time view of the sea. This helps enhance situational awareness, particularly in congested waterways or during low-visibility conditions like fog or storms. With AR, navigators can visualise information directly in their line of sight, minimising the need to shift focus between different instruments or screens. Maintenance and repair operations Maintenance and repair operations are another area where AR has proven to be highly effective. Technicians can use AR glasses or tablets to access real-time information on ship components, including interactive 3D models, schematics, and procedural guides. This allows for faster and more accurate repairs, reducing downtime and the need for specialised training. AR can also connect remote experts with on-site technicians, enabling real-time support and troubleshooting. Training and simulation Crew members can undergo immersive training sessions where they interact with AR-enhanced environments Training and simulation are other critical areas benefiting from AR. New crew members can undergo immersive training sessions where they interact with AR-enhanced environments, practicing tasks such as emergency procedures or cargo handling in a risk-free setting. This improves skill retention and reduces the time required to get new hires up to speed. In ports, AR can assist with cargo management by displaying real-time data on container contents, destination, and status. This streamlines the loading and unloading process, reducing errors and improving overall port efficiency. Benefits of AR for maritime stakeholders The integration of AR technology delivers a wide array of benefits to different maritime stakeholders, from shipowners and operators to port managers and regulators. For shipowners and operators, AR enhances the safety and efficiency of vessel operations. Improved navigation capabilities lead to fewer accidents, while real-time maintenance support reduces the risk of machinery failures and extends equipment lifespan. Immersive, on-the-job learning experiences Additionally, AR can cut training costs by providing immersive, on-the-job learning experiences that don’t require expensive simulators or extended training periods. Port operators also benefit from AR technology. Enhanced cargo management, optimised logistics, and real-time tracking of goods improve turnaround times and reduce operational bottlenecks. With AR’s ability to overlay data onto physical containers or equipment, ports can achieve greater accuracy in inventory management and resource allocation. Real-time data and augmented visuals AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements For manufacturers and engineers, AR enables the visualisation of complex equipment and components in a real-world context. This can facilitate better communication between shipbuilders, designers, and engineers, leading to more accurate construction and faster problem-solving when issues arise. Regulators and maritime authorities can use AR to improve safety inspections and compliance checks. By providing inspectors with real-time data and augmented visuals, AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements more efficiently. Encouraging Collaboration Across the Maritime Ecosystem One of the most exciting aspects of AR is its potential to foster collaboration among various maritime stakeholders. By connecting on-site personnel with remote experts through AR-enabled devices, maritime operators can access specialised knowledge without requiring experts to be physically present. This promotes better teamwork across geographical distances, improving problem-solving and decision-making in real-time. Reduces downtime For example, when a ship experiences technical issues in a remote location, AR allows an engineer onshore to guide a crew member step-by-step through the repair process, using visual overlays and interactive tools to ensure accuracy. This reduces downtime and ensures that operations can continue without the need for costly or time-consuming travel. Reduces errors By combining AR with digital twin technology, maritime professionals can access real-time digital replicas Collaboration is also enhanced in ship design and construction. AR allows shipbuilders, designers, and engineers to visualise and manipulate 3D models in a real-world environment, making it easier to collaborate on complex projects and reduce errors during the construction phase. Moreover, AR can integrate with broader industry initiatives, such as digital twins and automation. By combining AR with digital twin technology, maritime professionals can access real-time digital replicas of ships or port equipment, enabling more effective monitoring, predictive maintenance, and resource management. Misconceptions and challenges in adopting AR Despite its potential, some misconceptions about AR remain within the maritime industry. One common misconception is that AR is solely for high-tech, cutting-edge operations and isn’t suitable for traditional maritime businesses. However, AR technology is highly scalable, and its applications can be adapted to a wide range of maritime operations, from small vessels to large container ships and ports. Another misconception is that AR requires significant upfront investment in expensive hardware and software. Long-term savings While initial costs can be high, particularly for advanced AR glasses and devices, the long-term savings in operational efficiency, reduced training times, and improved safety often outweigh these costs. Additionally, more affordable AR solutions are emerging, making the technology accessible to a broader range of operators. Enhance focus and reduce cognitive load AR devices could create, particularly in high-stress environments like ship navigation or cargo handling There are also concerns about the potential distraction that AR devices could create, particularly in high-stress environments like ship navigation or cargo handling. However, when implemented thoughtfully, AR is designed to enhance focus and reduce cognitive load by delivering critical information directly to the user’s line of sight, rather than requiring them to divert attention to multiple screens or devices. Coordinating AR with Industry Initiatives and Future Trends AR is increasingly being integrated with other technological advancements in the maritime sector, including automation, the Internet of Things (IoT), and digital twin technologies. By providing real-time insights and data visualisation, AR can help facilitate the use of autonomous ships and enhance the monitoring and management of connected maritime systems. As the industry continues to prioritise sustainability, AR can also play a role in promoting greener practices. By optimising navigation routes and improving fuel efficiency, AR can help ships reduce emissions and minimise their environmental impact. AR-enhanced training As the technology continues to evolve, its applications will expand, offering new ways to improve safety Furthermore, AR-enhanced training can focus on eco-friendly practices, reinforcing the maritime industry’s commitment to sustainability. Looking forward, AR will likely play a crucial role in the future of maritime operations. As the technology continues to evolve, its applications will expand, offering new ways to improve safety, efficiency, and collaboration across the industry. AR navigating the challenges of the 21st century Augmented reality is poised to become a transformative tool in the maritime industry, offering tangible benefits in safety, operational efficiency, training, and collaboration. By integrating AR technology into maritime operations, professionals can stay ahead of industry challenges, enhance decision-making, and foster greater collaboration across the global supply chain. With the right approach, AR will not only improve day-to-day operations but also help future-proof the maritime industry as it navigates the challenges of the 21st century. {##Poll1732855978 - What area of maritime operations do you think would benefit the most from augmented reality (AR)?##}
The maritime industry, steeped in tradition, is now riding the wave of digital transformation, with big data playing a pivotal role in driving innovation and efficiency. For maritime professionals, the question isn’t whether to embrace big data, but how to maximise its practical benefits. Whether it’s a ship owner, port operator, or related to supply chain logistics, big data has the potential to streamline operations, enhance safety, reduce costs, and bolster profitability. This article explores how the maritime industry can leverage big data for future success and collaboration. Understanding big data and its intent Big data refers to the massive volumes of structured and unstructured data generated by various sources across the maritime ecosystem, from sensors on ships and ports to transactional and environmental data. The intent behind harnessing big data is simple: to analyse and convert this wealth of information into actionable insights. These insights can be applied to improve operational efficiency, enhance decision-making, optimise routes, predict equipment failures, and ultimately, reduce operational costs. In the maritime industry, the use of big data goes beyond basic analytics. It involves predictive modelling, real-time data analysis, and machine learning algorithms to identify patterns and trends that would otherwise remain hidden. For professionals in the sector, this means making informed, data-driven decisions that can help ensure the industry’s long-term success. Practical applications of big data in maritime Ships are equipped with thousands of sensors that monitor the performance of various systems One of the key applications of big data in the maritime world is route optimisation. By analysing historical shipping data, real-time weather forecasts, and ocean conditions, big data can help vessels chart the most efficient routes. This not only reduces fuel consumption and lowers carbon emissions but also ensures faster delivery times, improving overall operational efficiency. Predictive maintenance is another significant area where big data has proven to be invaluable. Ships are equipped with thousands of sensors that monitor the performance of various systems. By analysing the data from these sensors, predictive models can identify potential mechanical failures before they occur, reducing downtime and costly repairs. Maritime professionals benefit from enhanced safety, fewer delays, and more predictable maintenance schedules. In ports, big data is revolutionising logistics. Data-driven insights into cargo movements, storage optimisation, and real-time tracking of containers allow port operators to manage resources more effectively. This can prevent bottlenecks, improve turnaround times, and ensure that supply chains operate more smoothly. The benefits of big data for stakeholders The benefits of big data extend across various maritime stakeholders. Shipowners and operators can see a reduction in operating costs through optimised fuel usage and maintenance schedules, while port operators can better manage infrastructure and resource allocation. Shippers benefit from improved supply chain visibility and more reliable delivery schedules, while insurers can leverage big data to assess risks more accurately and offer better terms. For maritime regulators, big data enables more effective oversight. By analysing data from shipping routes, port activities, and vessel performance, regulatory bodies can develop more accurate policies and guidelines that address both environmental and operational concerns. For maritime manufacturers, big data offers insights into the performance of vessels and equipment, driving innovation and improvements in future designs. Fostering collaboration across the industry Maritime industry develops more effective plans for reducing emissions and meeting regulatory needs One of the most exciting aspects of big data is its potential to foster collaboration among various players in the maritime ecosystem. By sharing data across different stakeholders—such as ship owners, manufacturers, shippers, and port operators—the industry can work together to solve common challenges. For example, shared data can help optimise port congestion by coordinating arrival times, improving fuel efficiency through route sharing, and enhancing safety through real-time weather data. Collaboration is particularly important when it comes to environmental sustainability. By pooling data, the maritime industry can develop more effective strategies for reducing emissions, meeting regulatory requirements, and ensuring compliance with international environmental standards. Furthermore, big data enables a more integrated approach to supply chain management, with all parties having access to the same real-time information, leading to more seamless operations. Dispelling misconceptions about big data Despite its many advantages, there are still some misconceptions about big data in the maritime industry. One common myth is that the adoption of big data requires significant investment in infrastructure and technology, which may seem prohibitive for smaller operators. While the initial costs can be high, the long-term savings in fuel, maintenance, and operational efficiency often outweigh these upfront expenses. Another misconception is that big data will replace human expertise. In reality, big data is a tool that complements, rather than replaces, the knowledge and experience of maritime professionals. It provides insights that enhance decision-making but still relies on human interpretation and action. The industry’s expertise remains crucial in applying data insights in a practical and effective manner. Coordinating big data with other industry initiatives Moreover, big data aligns with the growing emphasis on cybersecurity in maritime operations Big data isn’t a standalone solution but works in conjunction with other industry initiatives, such as the shift toward greener shipping and the use of automation in port operations. It complements efforts to reduce the industry’s carbon footprint by identifying energy-saving opportunities and ensuring that vessels meet environmental regulations. In automation, big data helps ports and shipping companies optimise their operations, improving efficiency and reducing human error. Moreover, big data aligns with the growing emphasis on cybersecurity in maritime operations. As more systems become connected, the potential risks increase. Big data can help detect and mitigate cyber threats by identifying abnormal patterns of behaviour within connected systems, safeguarding both operational data and sensitive cargo information. Conclusion Big data is revolutionising the maritime industry, offering practical solutions that enhance efficiency, reduce costs, and promote collaboration. By embracing this technology, maritime professionals can ensure their operations are safer, more efficient, and more profitable, positioning the industry for long-term success. While there are challenges and misconceptions to address, the benefits of big data are undeniable, making it a crucial tool for maritime professionals seeking to navigate the future of the industry with confidence.
Offshore wind farms are a major component of the future of clean energy, and the share of electricity generated by offshore wind turbines will increase as the global community works to minimise carbon emissions to achieve net zero by 2050. Current expectations for the vast expansion of energy production from offshore wind farms may lead to environmental impacts and ecological risks to marine ecosystems. Maritime consequences The increase in offshore wind farms will also have broad consequences for the maritime industry. Building, operating, and maintaining the wind farm facilities offer a lucrative new stream of revenue for shipbuilders and maritime equipment manufacturers. Government subsidies or tax breaks to support the domestic shipbuilding industry, particularly related to offshore wind projects, can reduce costs for shipbuilders and increase profit margins. With around 40% of the world's population living within 60 miles of the ocean, offshore wind farms enable the location of a clean energy source close to where it is needed most. Shipyards key to offshore wind farm projects The added expense of building the specialised vehicles can increase profit margins Shipyards take center stage and employ their technical prowess to ensure offshore wind farm structures are assembled safely and efficiently in demanding maritime environments. Specialised vessels and complex engineering will drive construction of the large projects over multi-year timespans. Technology innovation to achieve the mission will ensure shipyards have a competitive edge and attract premium contracts. Growing demand for specialised ships will provide a workload for shipyards. The added expense of building specialised vehicles can increase profit margins. Equipment used Equipment used for the installation of offshore wind farms includes wind turbine installation vessels (WTIV), which use powerful cranes to handle the heavy lifting of transporting and installing the massive wind turbines to the offshore location. There are also crew transfer vessels (CTV), and high-speed catamarans that ferry personnel and lighter equipment between the shore base and the wind farm site. For fixed-bottom wind farms, there are subsea rock installation vessels (SRIV), which precisely position and secure the heavy rock foundations on the seabed. Floating service operation vessels (SOVs) The growth of offshore wind farms presents an opportunity for shipbuilders to increase their profitability After offshore wind farms are installed, floating service operation vessels (SOVs) provide living quarters, workshops, and storage for spare parts and tools needed for ongoing maintenance of the turbines. Overall, the growth of offshore wind farms presents an opportunity for shipbuilders to increase their profitability through building specialised vessels, technology innovation, and potential government support. Considering the impact on the maritime ecosystem On the downside, there are unanswered questions about the impact of wind farms on the delicate balance of the maritime ecosystem. Will the new structures be destructive to marine life, or might they somehow help to improve the habitats and even offset the effects of climate change? It is likely that tall wind turbine structures, some reaching heights of more than 850 feet, will have some effect on the ocean environment. Reducing local wind speed, impacting the surrounding climate, and even causing disturbances in the water will likely affect marine life, although more research is needed to document the exact impact. Ecosystem-based approach More attention is needed to such concerns as offshore wind farm construction accelerates Might underground elements of offshore wind turbines provide “artificial reefs” that could enhance the environment for marine life? There are gaps in scientific knowledge concerning how marine species and habitats may coexist alongside new devices and habitats. An ecosystem-based approach should ensure that the pressures of maritime activities do not compromise a resilient marine ecosystem and a healthy ocean. More attention is needed to such concerns as offshore wind farm construction accelerates. Exclusion zones Exclusion zones around offshore wind farms can restrict traditional fishing grounds, thus impacting the livelihoods of fishermen. Displacement of fishing vessels, particularly those using bottom trawling gear, may be necessary. Shallow waters that support a rich variety of sea life also tend to be good locations for wind turbines. Some have suggested that wind farms could negatively impact the growth of phytoplankton, single-cell plants, and organisms that form the basis of the oceanic food chain. Collaboration and communication among stakeholders New routes can add time and distance to journeys, thus impacting shipping costs Specialised vehicles needed for the construction and maintenance of wind farms can increase traffic in certain areas. Might the resulting underwater infrastructure and cabling needed for offshore wind farms require additional maneuvering and increase the complexity of maritime routes? New routes can add time and distance to journeys, thus impacting shipping costs. At the very least, high levels of collaboration and communication among stakeholders will be required to minimise the impact. Wind farm developers, energy experts, shipbuilders, shipping companies, insurers, and fishermen will need to cooperate through the planning and construction phases. Limited visibility Occupying a significant amount of sea area, wind turbines can reduce navigable space, particularly considering large vessels that require wider turn circles. Additional congestion may result, especially in areas with pre-existing heavy traffic. Limited visibility due to fog or bad weather can aggravate the need to maneuver around the equipment, and sudden course changes can be risky. Interfering radar signals Some wind turbine structures could interfere with radar signals used by ships, which requires new navigation procedures and a need to upgrade existing equipment. Solutions include locating wind farms away from heavily trafficked areas and establishing shipping lanes. Also, spacing turbines strategically (and further apart) can leave more navigable channels for ships. Looking ahead, the impact of offshore wind farms should be weighed carefully. Monitoring existing wind farms and those being built can increase understanding of their broad impact.
Case studies
San Francisco-based maritime technology company - Sofar Ocean announces a partnership with the U.S. Naval Meteorology and Oceanography Command’s (CNMOC) Fleet Weather centres in Norfolk (FWC-N) and San Diego (FWC-SD). Wayfinder platform FWC-N and FWC-SD, the Navy’s two primary weather forecasting centres, are piloting Sofar’s Wayfinder platform to support the routing of naval vessels at sea. The FWCs are utilising Wayfinder to identify safe and efficient route options powered by real-time ocean weather data for Military Sealift Command (MSC) ships. Situational awareness Tim Janssen, Co-Dounder and CEO of Sofar, said, "Wayfinder will empower the Navy to enhance situational awareness at sea and leverage data-driven optimisation to continuously identify safe and efficient routing strategies." He adds, "Powered by our real-time ocean weather sensor network, Wayfinder will help the Navy scale its routing operations to support a heterogeneous fleet operating in conditions made more extreme by the effects of climate change." CRADA The platform displays real-time observational data from Sofar’s global network of Spotter buoys The Navy is evaluating Wayfinder under CNMOC and Sofar’s five-year Cooperative Research and Development Agreement (CRADA) signed in July 2023. Wayfinder reduces manual tasks for forecasters and routers by automatically generating a forecast along a vessel’s route. The platform displays real-time observational data from Sofar’s global network of Spotter buoys to reduce weather uncertainty for route optimisation, and predict unwanted vessel motions during a voyage. Real-time wave and weather observations The availability of accurate real-time wave and weather observations helps Captains and shoreside personnel validate forecast models and examine multiple route options more efficiently, streamlining a historically complex and arduous process. Lea Locke-Wynn, Undersea Warfare Technical Lead for CNMOC’s Future Capabilities Department, said, "A key focus area for the Naval Oceanography enterprise is fostering a culture of innovation through collaboration with our commercial partners." Vessel-specific guidance Lea Locke-Wynn adds, "Our ongoing CRADA with Sofar Ocean is a perfect example of how our partnerships can leverage the leading edge in industry to further Department of Defence operations." As the number of naval vessels at sea, including experimental and autonomous ships, continues to increase, forecasters and routers will have less time to spend manually producing vessel-specific guidance. Automated forecast-on-route guidance More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks Wayfinder helps fill this operational gap, enabling FWC-N and FWC-SD to more efficiently support a large fleet in real-time with automated forecast-on-route guidance. More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks that require their unique expertise. Streamlined decisions Captain Erin Ceschini, Commanding Officer, FWC-SD, stated, "By using Wayfinder, we’re able to better visualise our ships’ routes, and make safer and more streamlined decisions on route, speed, and heading." Captain Erin Ceschini adds, "Wayfinder has the potential to be a critical component of our day-to-day operations and a key driver of safe routing as we contend with an increasingly unpredictable weather landscape."
The accuracy of AIS data used to track ship movements is vital for the analysis of vessel performance in areas such as fuel consumption. OrbitMI has therefore collaborated with Maritime Data on a joint project to enhance the screening of AIS data providers so it can deliver the best quality data for clients. Orbit vessel performance platform “We are continuously striving to optimise data inputs for users of our newly upgraded Orbit vessel performance platform to improve business decision-making." "With this goal in mind, we engaged Maritime Data as a trustworthy partner to contribute its specialist expertise in data procurement for the industry,” says OrbitMI’s Chief Marketing Officer David Levy. Assuring the quality of data inputs Maritime Data supports companies in the maritime ecosystem from concept to contract Maritime Data is a UK-based start-up founded in 2022 by Co-Founders Rory Proud and James Littlejohn with a mission to address the difficulties in sourcing, evaluating, and buying maritime data by acting as a specialised intermediary between buyer and supplier. As a data broker, Maritime Data supports companies in the maritime ecosystem from concept to contract. This enables clients to quickly understand all available solutions relevant to their requirements, evaluate comparable options, and contract with their suppliers of choice. All to minimise the effort required and give time back to the people building solutions needed to tackle the industry's biggest challenges. Buying data is made easier. Accurate customer service Backed by more than 15 years of experience in the sector, Maritime Data has built up an extensive partner network of over 50 maritime intelligence suppliers and 200-plus product offerings in areas such as vessel tracking, emissions calculation, seaborne cargo flows, risk and compliance, port activity, trade statistics, weather, and vessel ownership. “The quality of data being inputted into any model, process, or technology will have a meaningful impact on output,” explains Maritime Data’s Co-Founder James Littlejohn. "It is therefore essential for maritime technology companies to meaningfully evaluate all of their data inputs to ensure their solution provides the most accurate service for their customers." Tackling sourcing challenges Real-time data generated by the AIS is considered the X-axis for any evaluation of vessel operations The joint project has focused on tackling the challenges of acquiring the right AIS data arising from discrepancies in datasets offered by various vendors that make assessment and evaluation difficult for data buyers. Real-time data generated by the Automatic Identification System (AIS) is considered the X-axis for any evaluation of vessel operations and is a fundamental data layer for performance monitoring as it shows position, course, and speed, which can be combined with weather data to optimise operations, according to James Littlejohn. However, AIS is extremely data-heavy with hundreds of millions of data points being generated by thousands of vessels across the globe every day, which requires commensurately massive computational resources to ingest and analyse this data. New vendor evaluation protocol Under the joint project, Maritime Data conducted a comparative assessment of four leading AIS data providers using a new, specially developed evaluation protocol to ascertain the quality of their respective offerings based on carefully designed criteria. Maritime Data was able to take samples of a week of AIS data from each of the four providers and measure each dataset against various benchmarks provided by OrbitMI to help determine the coverage, accuracy and frequency of the respective feeds. A segment of these samples was then taken and split out over 80 different geolocations that were visualised as polygons on a map to show geographical coverage. Heavyweight analytics Independent validation of the supplier selection process enabled this to be conducted more quickly James Littlejohn points out that conducting this process of comparison and evaluation with such vast amounts of data would entail a lot of time and resources for a maritime technology firm such as OrbitMI, causing opportunity cost, while it took Maritime Data about a month to complete the analysis and this time is likely to be shortened in future as the process becomes more efficient. He says that independent validation of the supplier selection process enabled this to be conducted more quickly and without bias in favour of any one data vendor. “The outcome of the process was exactly as we expected and piloting this tool with OrbitMI has given us a springboard for further development and application of the selection protocol. This enabled OrbitMI to proceed with a decision on AIS sourcing secure in the knowledge that the data would fulfill the needs of its customers,” James Littlejohn says. Selecting the ideal AIS data provider At the end of the process, OrbitMI selected Lloyd's List Intelligence as its AIS data provider. “Lloyd's List Intelligence has been a long-time and valued partner of ours,” says Ali Riaz, OrbitMI's CEO. “The quality and versatility of their data offerings, assurances of data accuracy, customer service, and commitment to collaboration compared to the other offerings were unbeatable.” This decision aligns with Lloyd's List Intelligence's strategic vision for the industry. A collaborative, connected approach Tom Richmond, Head of Software & Technology Sales at Lloyd's List Intelligence, elaborates, “Working with innovators like OrbitMI is part of our strategic plan to help the shipping industry move beyond siloed thinking and kick-start a more collaborative, connected approach to integrating seaborne trade in the global supply chain." "We’re happy to support innovation with high-quality products at a price point that stimulates collaboration in the sector.” AIS data quality assurance OrbitMI’s David Levy concludes, “This project demonstrates we are prioritising data quality for our clients by harnessing the power of partnership with a major player." "The AIS data quality assurance process piloted by OrbitMI with Maritime Data will benefit users of the new Orbit platform by ensuring optimised and reliable data inputs covering the global fleet.”
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
GEM elettronica is proud to announce the conclusion of a strategic project to strengthen Lithuania’s defense capabilities, during which cutting-edge surveillance radars with airspace monitoring function were installed on four patrol ships of the Lithuanian Navy. The contract was executed successfully and within the agreed-upon timelines, thanks to the collaboration between the Italian defence companies Leonardo and GEM elettronica. Advanced radar system The heart of the system is the Columbus MK2 3D multi-mission radar developed and produced in house by GEM Elettronica, specially designed for coastal surveillance and naval applications, made with the latest technologies, which guarantee high detection performances for search and tracking of small and fast targets at both air and sea surface space, high reliability and availability with low maintenance and life cycle costs. It is a compact and lightweight advanced radar system for short- and medium-range detection performing all the functions of surveillance, self-defence, IFF capabilities and weapon designation. The new radar systems were installed on the Lithuanian Flyvefisken (Standard Flex 300) class offshore patrol vessels (OPVs) Žemaitis (P11), Dzūkas (P12), Aukštaitis (P14) and Sėlis (P15). Working effectively together The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages (e.g., straits, port channels) and in the open sea, as well as in search and rescue missions. The systems will allow objects to be detected up to 100 kilometers away. The Commander of the Lithuanian Naval Forces Sea, Captain Giedrius Premeneckas underlined: “The successful implementation of this project represents a significant step in strengthening the capabilities of the Navy’s patrol vessels and significantly increasing our ability to carry out assigned tasks and work effectively together with NATO allies.” The President of GEM elettronica Ing. Antonio Bontempi answered “We are delighted to have successfully contributed to the realization of this strategic project. We are also proud of what achieved by our R&D and Production teams who worked together with passion and tenacity to ensure the project was achieved within the expected timescales.”
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use
Wärtsilä ANCS, part of technology group - Wärtsilä, has delivered to Seaspan, a marine transportation and shipbuilding company, cutting-edge autonomous SmartDock capabilities to the seas. This delivery marks a significant step towards autonomous docking and undocking operations, making maritime activities safer and more efficient. The SmartDock system developed by Wärtsilä ANCS enables Seaspan to perform autonomous docking manoeuvres even in challenging conditions, where currents reach up to two knots. With its advanced technology, SmartDock guarantees consistent, safe, and predictable docking and undocking manoeuvres every time, reducing the need for intensive interaction from the vessel’s captain. Wärtsilä ANCS's laser sensor Wärtsilä ANCS’s scope of work, which was signed in 2021, has fed the liberated SmartDock system Wärtsilä ANCS’s scope of work, which was signed in 2021, includes providing the autonomous SmartDock system, including track development for autodocking at Tilbury, Duke Point, and Swartz Bay ports in Canada. Notably, the SmartDock system employs an advanced UKF (Unscented Kalman Filter) estimator, combining sensor measurements from various sources, such as GNSS (Global Navigation Satellite System) and Wärtsilä ANCS's laser sensor Cyscan AS, to calculate precise position and rate estimates of the vessel's motion. Advanced controller allocates thrust and steering commands This data is then compared to a preprogrammed ideal trajectory of the vessel, and the advanced controller allocates thrust and steering commands, ensuring safe and consistent autonomous docking and undocking manoeuvres. The commissioning of the Seaspan Trader cargo vessel has just been completed, with the Seaspan Transporter cargo vessel scheduled to be commissioned in late 2023/early 2024. These vessels, equipped with the SmartDock system, will operate in the waters of British Columbia, Canada. Wärtsilä and Seaspan partnership “Wärtsilä ANCS is excited to continue supporting Seaspan and build on an already strong working relationship. We look forward to the potential implementation of the SmartDock product across some other vessels in Seaspan's ferry fleet, further advancing the automation and efficiency of maritime operations,” commented Klaus Egeberg, Director, Dynamic Positioning, Wärtsilä ANCS. “Seaspan is proud to lead the charge in this technological advancement in vessel manoeuvring. The integration of Wärtsilä ANCS's SmartDock system into Seaspan Trader exemplifies our unwavering commitment to excellence and innovation in maritime operations,” says Alexander Treharne, Integration Engineer, Seaspan.