Decarbonisation
Mitsubishi Shipbuilding Co., Ltd., a part of Mitsubishi Heavy Industries (MHI) Group, has concluded a contract with the Indonesian Maritime Security Agency (BAKAMLA) for the construction of an offshore patrol vessel (OPV). The vessel will be built at MHI's Shimonoseki Shipyard & Machinery Works in Yamaguchi Prefecture, with completion and delivery scheduled for March 2028. Ability of maritime rescues This project is based on a grant agreement concluded in March 2024 between the Government...
The World Shipping Council welcomes the balance between sustainability and competitiveness struck in the European Commission’s Competitiveness Compass released that will form the basis for the EU’s Clean Industrial Deal. WSC, however, called on the Commission to recognise that liner shipping is investing in Europe and urged the Commission to support the sector on its path to decarbonise supply chains, fostering open trade and protecting critical sea lanes...
Kongsberg Maritime is proud to announce its selection as the lead integrator for a significant green upgrade of the Norwegian Coastal Administration's (NCA) hybrid vessel, OV Bøkfjord. The project will include the installation of Kongsberg Maritime's electric Rim-Drive azimuth thrusters, together with an upgrade of hybrid capacity. Pilotage and navigation technology The NCA is a national agency under the Ministry of Trade, Industry, and Fisheries, responsible for coastal mana...
Global law firm Norton Rose Fulbright, working in conjunction with pioneering Spanish law firm Uría Menéndez, has advised Bibby Marine on a financing package with HSBC UK to support the development of its previously announced zero-emission electric Commissioning Service Operation Vessel for servicing offshore wind farms. The multi-million euro financing made available by HSBC UK is backed by Cesce, the Spanish Export Credit Agency. HSBC acted as sole ECA coordinator, mandated lead...
A new design for an ammonia floating production storage and offloading (FPSO) unit that features onboard carbon capture technology for blue ammonia production has received approval in principle (AIP) from ABS. The design comes from MODEC, Inc. (MODEC), in collaboration with Toyo Engineering Corporation (TOYO). ABS completed design reviews based on class and statutory requirements. Emissions of offshore operations It is produced by combining hydrogen, which is derived as a byproduct of carbon...
Technology group Wärtsilä has signed a ten-year Lifecycle Agreement with Spanish ferry operator Baleària. The agreement covers Baleària’s new high-speed aluminium structure catamaran Ro-Pax ferry, the Margarita Salas, which recently entered service. Margarita Salas The ship was built at the Astilleros Armon Gijon yard in Spain. It operates with four Wärtsilä 31DF dual-fuel engines, four Wärtsilä WXJ hydraulic waterjets, and fea...
News
The Royal Thai Navy aims to purchase two frigates, with a budget for the fiscal year 2026, which will likely receive parliamentary approval. On January 18, at the National Memorial, Admiral Jirapol Wongwit, Commander-in-Chief of the Royal Thai Navy, provided an update on the progress of procuring two frigates. He stated that the process is currently in the budgeting phase, which exceeds 1 billion baht and requires Cabinet approval before being forwarded to Parliament for consideration. Safeguard maritime sovereignty The decision will rest with Deputy Prime Minister and Defence Minister Phumtham Wechayachai, who will evaluate the proposal. If necessary, the Navy is prepared to provide further clarification. “I believe the public and the government alike will agree on the need for these frigates to strengthen naval capabilities and safeguard maritime sovereignty. Our naval power has been declining year by year. Without reinforcements, neighbouring countries may no longer respect our position,” he stated. Navy’s roles and responsibilities When asked if he was confident the procurement would pass all parliamentary stages, Admiral Jirapol said it depends on lawmakers’ understanding of the Navy’s roles and responsibilities. “We are making every effort to communicate our position clearly and are optimistic that the proposal will ultimately be approved,” he said.
Pioneering bunker trading firm, Glander International Bunkering, has introduced a tool to help users calculate key data for compliance with FuelEU Maritime, which came into effect on January 1, 2025. FuelEU Maritime aims to reduce carbon emissions in the shipping sector by incentivising the use of alternative fuels and imposing penalties for non-compliance. FuelEU Maritime guidelines With the new Compliance Calculator, Glander International Bunkering helps users understand potential penalties and savings based on voyage type, fuel, and quantity. The Compliance Calculator is specifically designed for commercial vessels over 5,000 GT and adheres to the stricter FuelEU Maritime guidelines rather than the IMO’s. Next update planned for 2030 The simplified version supports MGO and VLSFO, while the full version can calculate all fuel types The simplified version supports MGO and VLSFO, while the full version can calculate all fuel types, offering users more comprehensive insights. Additionally, the calculator is built to adapt to regulatory changes, with the next update planned for 2030. Frederik Moser, Head of New Fuels, said, "As the industry adapts to new regulations, understanding the implications of fuel choices is crucial to operating efficiently and responsibly. Our goal is to help maritime operators reduce costs, avoid penalties, and transition to new fuels in a smoother, more efficient way." ISCC EU and ISCC PLUS certifications Aligning with Glander International Bunkering’s ISCC EU and ISCC PLUS certifications, the Compliance Calculator demonstrates the benefits of certified biofuels and supports the company’s commitment to sustainability. For more detailed and customised insights, the full version of the calculator can be accessed by contacting the New Fuel Advisors at Glander International Bunkering.
ClassNK has granted its Innovation Endorsement for Products & Solutions to ‘D-VESSELKEEPER: EEM and PHM' developed by WinKong Marine Engineering Co., Ltd. ClassNK-registered vessels equipped with the product can be given the 'DSS' notations (EE+Sn, MM), which indicate ships with advanced digital technology. Innovative functions In order to promote the spread and development of innovative technologies, ClassNK has offered Innovation Endorsement for Products & Solutions. ClassNK supports the deployment of products and services through third-party certification for equipment and software technology with innovative functions. Product name: D-VESSELKEEPER: EEM and PHM Product description: EEM and PHM, which are sub-functional modules of D-VESSELKEEPER, designed for ship's performance and maintainability improvement Ship energy efficiency monitoring and management by automatic data collection and analysis Equipment energy efficiency and performance monitoring by automatic data collection and analysis Carbon intensity monitoring by automatic data collection or manual reporting Equipment health intelligent prediction and fault diagnosis by vibration detection Maintenance suggestion.
SEAONICS has signed a record-breaking contract covering the delivery of five Electric Controlled Motion Compensated ECMC Gangways and five ECMC 3D Cranes for an international customer to a series of walk-to-work offshore newbuilds under construction at global shipbuilder VARD's yard in Vietnam. The advanced equipment will enable the vessels to provide comprehensive maintenance, supply and operational services to offshore oil-and-gas installations. Benefits of the DC grid and battery solution The gangways will secure the safe transfer of cargo and personnel from the vessels to offshore systems The ECMC systems ensure smooth and precise movements even in challenging sea conditions by compensating for the vessel's motion. The simplified design promotes operational safety and efficiency, reducing the time and effort required for cargo handling and personnel transfer. The gangways will secure the safe transfer of cargo and personnel from the vessels to offshore installations, and the cranes have a motion-compensated lifting capacity of 15T 3D lift and 15T motion-compensated Subsea lift. Both systems have an outreach of 30 metres. The Seaonics ECMC systems utilises directly the benefits of the DC grid and battery solution on the vessels. Safer operations in the offshore industry SEAONICS Managing Director Håkon Fauske said: "This is a significant milestone for Seaonics and underscores our position as a pioneering supplier of advanced electric lift and handling equipment. We look forward to collaborating with the shipowner and contributing to smarter, greener and safer operations in the offshore industry." “It has been a long process with good cooperation with the customer and I am certain that the final solution will be very well suited to their operations,” added Sales Manager Petter Nesset. Five ships of VARD 3 32 design Vard Vung Tau in Vietnam is responsible for building, equipping, sea trials and delivery of the five ships of VARD 3 32 design, contracted by Vard Group in November 2024. All five vessels will be delivered in 2027. With this latest contract, the total number of ECMC Gangways and ECMC Cranes SEAONICS has sold so far is 16 and 18, respectively. Both were introduced to the market in 2023.
Penta-Ocean Construction, a prominent Japanese general contractor, has commissioned Ulstein Design & Solutions B.V. to design its new heavy lift vessel for offshore wind foundation installation. The customised ULSTEIN HX118 design will feature a 5,000-ton Huisman main crane and the ULSTEIN U-STERN™, which enables installation of increasingly larger monopile foundations. Ulstein's successful track Following feasibility and concept studies in 2023, Penta-Ocean Construction selected Ulstein for the project. Ulstein proposed the HX118 with the U-STERN™, a design that builds on Ulstein's successful track record of crane vessels. The selected design offers a well-balanced combination of a flush work deck, lifting capacity, accommodation and DP capability and will be the largest X-BOW® vessel to date. Basic Design of the heavy lift vessel The design is being set at Ulstein’s Rotterdam office, with significant support from Ulstein Poland The U-STERN™, developed by Ulstein, features longitudinal storage and upending of monopiles along the ship’s centreline. This innovation enables the installation of longer monopiles without overhanging the ship’s sides and allows the vessel to face into the waves during the installation, minimising ship motions and fuel consumption. Since last summer, Ulstein has been collaborating with Penta-Ocean Construction on the Basic Design of the heavy lift vessel, including an extensive model test program. The design is being developed at Ulstein’s Rotterdam office, with significant support from Ulstein Poland during the Basic Design phase. Monopile installation vessel "We are honoured that Penta-Ocean Construction chose us to design their new heavy lift vessel. This project represents a powerful collaboration between Penta-Ocean Construction, Ulstein and Huisman to design this most capable monopile installation vessel,” says Ko Stroo, lead designer at Ulstein Design & Solutions B.V. “As the project moves forward with its construction at the Seatrium shipyard, Singapore, we remain committed to supporting the parties throughout the construction phase.”
ABS is investing in the expansion of its services to build on its position and ensure it is well-placed to meet the growing needs of the marine and offshore industries. That was the message for maritime pioneers from across the region at the annual ABS Southeast Asia Regional Committee meeting. “Our safety-driven mission continues to serve us well, and we are building on this strong foundation by investing in widening and deepening the scope of our class services,” said Christopher J. Wiernicki, ABS Chairman and CEO. Simulation, visualisation, and gaming “We are leveraging our deep domain expertise and industry relationships to create new growth opportunities and value for our clients while guarding against the unintended consequences of the rapid and disruptive change we are witnessing in our industry." "At the same time, we are focused on developing people, investing in next-generation learning environments using simulation, visualisation, and gaming technologies to deal with the emerging challenges of fuel safety and increased cyber-enabled physical systems.” Fleet safety performance The ABS fleet has grown to 300 million gross tons and has secured the number-one position The committee heard ABS is the Class in Singapore for the marine and offshore industries, with a fleet and orderbook position. Wiernicki also updated the members on ABS’ industry-pioneering fleet safety performance, which underpins its focus on safety and its mission. The ABS fleet has grown to 300 million gross tons and has secured the number-one position in the global order book share. Maritime decarbonisation projects “Singapore is so important to ABS. We are the market pioneer here and we serve this with one of the largest offices in the company,” said Wiernicki. “It is also home to the new global ABS Electrification centre to support maritime decarbonisation projects." Sustainability and simulation centre "Additionally, Singapore is home to one of the five global ABS Sustainability centres and the ABS Global Simulation centre that provides clients with a virtual representation of an asset that ABS engineers use to analyse, configure, and test safely and cost-effectively.” Wiernicki, who has strong ties to Singapore as a visiting professor at the National University of Singapore and a member of Singapore’s Maritime International Advisory Panel, had earlier participated in the Singapore Maritime Foundation’s New Year Kickoff event. Green and digital transformation Teo Eng Dih, Chief Executive, of the Maritime and Port Authority of Singapore (MPA), who was the guest of honour at the event, said, “ABS’ strong presence in Singapore reflects ABS’ commitment to helping international shipping navigate the green and digital transformation and underscore its trust in Singapore’s role as a strategic hub for the maritime industry." "MPA values its partnership with ABS and invites others to also tap into Singapore’s vibrant industry and innovation ecosystem to grow their capabilities, enhance their services, and advance the maritime sector.” Exchanging and engaging ideas The Committee also heard about the limitations on retrofit capacity in shipyards, as well as a detailed fuel forecast from ABS sustainability pioneers and the competition for alternative fuels from industries outside shipping. Other presentations covered the latest developments from ABS Wavesight and highlights from more than 100 joint development projects in a range of advanced technologies. Committee chairman, Captain Rajalingam Subramaniam, CEO, of Fleet Management Limited, said, “My thanks to ABS for connecting us, bringing this esteemed group of colleagues together to exchange ideas and engage in constructive discussions to support innovative solutions and forward progress in the maritime industry.”
Expert commentary
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Aiming to establish minimum requirements for the cyber-resilience of newbuild vessels and their connected systems, IACS unified requirements (URs) E26 and E27 provide a new benchmark for shipping’s response to its growing exposure to cyber-attacks. Officially in force from 1 July 2024 and broadly welcomed by industry, the new URs represent another step forward in strengthening Maritime's resilience to the evolving cyber threat. However, according to a thought-provoking discussion recently hosted by Edwin Lampert, Executive Editor of Riviera in partnership with Inmarsat Maritime (a Viasat company), shipping companies must still conduct comprehensive risk assessments and implement appropriate mitigation measures. Vessel’s cyber security They ensure all stakeholders are responsible for the vessel’s cyber security Kostas Grivas, Information Security Officer, Angelicoussis Group told the ‘IACS URs E26 & E27: Bridging the gap between regulation and implementation’ session that the URs bring “obvious benefits” such as eliminating “scattered requirements”. They provide “common and crystal-clear ground for auditing and control purposes”, and establish “a solid description of the minimum technical, procedural, and other criteria that govern a vessel’s cyber resilience,” he said. Finally, they ensure “all stakeholders are responsible for the vessel’s cyber security”. Makiko Tani, Deputy Manager, Cyber Security at classification society ClassNK, also acknowledged that the new requirements will “contribute to the visibility of ever-digitalising shipboard networks and their assets”, however, as there is no one-size-fits all cybersecurity solution to all, she continued, “additional controls beyond those specified in the requirements may be necessary, depending on the vessel’s connectivity”. Digital transformation strategy To properly address the cyber risks that a specific vessel is exposed to, she said, “shipowners must conduct a thorough cyber-risk assessment. This relies on a ‘C-level commitment’ to establishing a cyber-security programme that facilitates compliance with URs E26 and E27 and any other future industry requirements while supporting the organisation’s digital transformation strategy”. The importance of looking beyond the IACS URs was also emphasised by Laurie Eve, Chief of Staff, Inmarsat Maritime, who proposed three key areas where companies should “focus and invest not only to meet new requirements but also to go beyond compliance and build good cyber resilience”. Quality management system and standards The firm should focus on training and grasping, managing user rights, investing in a regime system “The first key area, ‘people and culture’, addresses the notion that people are the weakest link in cyber security. According to a 2023 report from the United States Coast Guard as well as findings from Inmarsat’s security operations centres, phishing is the most common initial access vector in cyber-attacks. Investing in people, therefore, should be an absolute no brainer”, commented Eve. Specifically, he continued, a company should focus on training and awareness, managing user privileges, investing in a quality management system and standards such as ISO 27001, assessing suppliers’ risk-management practices, and embedding cyber-security in the organisation’s continuous improvement culture. Risk-management approach The third and final key area according to Eve is an ‘incident response plan’ (IRP). The second key area is ‘network-connected systems and services’. Given the number of attack surfaces on board a vessel and the ever-growing volumes of data moving between systems, many companies lack the time and resources to address all possible weaknesses. The solution, Eve said, is a risk-management approach in which the organisation assesses the risks, sets its risk appetite, and implements security measures according to the costs it is willing and able to bear. The third and final key area according to Eve is an ‘incident response plan’ (IRP). It’s prudent to assume that at some point there will be failures and a breach, an IRP comprises a robust set of contingencies to keep the cost of business disruption to a minimum. It requires investment in backup and data systems as well as regular staff training. “Having a plan is good; training, rehearsing, and improving the plan is better,” explained Eve. Cyber-security requirements While these recommendations apply to all ship owners, Eve acknowledged that there are differences from small to large operators in terms of the budget and internal capability invested in cyber resilience. “Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements which makes it a particularly good fit for “smaller operators without the in-house capability to put together their own solutions”, he said. Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements Combining three powerful components – Fleet Secure Endpoint, Fleet Secure Unified Threat Management, and Fleet Secure Cyber Awareness Training – the Fleet Secure portfolio provides the tools and facilitates a risk-management approach, supporting “compliance with the new requirements” and, more broadly, “increasing cyber resilience”, Eve added.
Demand for ammonia is being transformed by the energy transition. Until recently used as an input for fertiliser and chemical products, new markets for green and blue ammonia are emerging, replacing fossil energy in power generation, steel production and marine fuel. Today some 200m tonnes per annum of ammonia is produced worldwide with 20m tpa transported in LPG carriers. The scale of the emerging and potential demand will see these figures rise; how quickly this can be achieved will determine its take-up as a shipping fuel. New or evolving technology The interest in ammonia stems both from its ‘zero emissions’ when used as fuel and because its production isn’t dependent on biogenic carbon sources. As the global economy transitions away from fossil-based fuels, biogenic carbon – from captured CO2, electrolysis and even waste sources – will be subject to increasing competition from other consumers. Shipyards around the world are considering the advantages that operating on ammonia may provide Accordingly, owners, operators, designers, and shipyards around the world are considering the advantages that operating on ammonia may provide. However, when considering any new or evolving technology, it is important to have a clear understanding of not only the benefits, but the challenges that may be involved. Challenges of ammonia bunkering Biogenic carbon will increasingly replace fossil-based carbon in many of the products in use today in industry and consumer goods. Competition from the energy and aviation sectors will inevitably lead to increased prices but production capacity will need to come from industrial sources rather than biomass harvested for this purpose. ABS has produced a Technical and Operational Advisory on Ammonia Bunkering in response to the need for better understanding by members of the maritime industry. It is intended to provide guidance on the technical and operational challenges of ammonia bunkering, both from the bunker vessel’s perspective (or land-side source) and from the receiving vessel’s perspective. Managing emissions Particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions The carbon emissions from the combustion of ammonia are associated with and dependent on the type and amount of pilot fuel used. The use of biofuel as pilot fuel may further reduce the emissions. In addition, the emissions of sulphur dioxide, heavy metals, hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs) drop to zero (or near zero, depending on the pilot fuel used); and particulate matters (PM) are also substantially reduced compared to conventional fossil fuels. However, particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions, due to the imperfect combustion of ammonia and the use of pilot fuels. These emissions will need to be kept as low as possible by further adjustment and development of the engine technology or using an on-board exhaust gas treatment technology. Currently, hydrogen for ammonia production is typically produced by means of steam methane reforming (SMR) or autothermal reforming (ATR) of natural gas (grey ammonia). If the CO2 emissions from the process of converting natural gas are captured and stored, the ammonia is typically referred to as ‘blue’. Production of blue ammonia Moreover, the production of blue ammonia retains a dependency on fossil fuels. Therefore, ‘green ammonia’, which is produced from hydrogen made from renewable energy sources (green hydrogen), is generally considered to be the end-solution for decarbonisation which leads to a sustainable fuel cycle, while blue ammonia is seen to have an intermediate role. The potential well-to-wake GHG emissions of green ammonia are estimated to be around 91% lower than for grey ammonia, and 85% lower than HFO and MGO. The grey ammonia production network is already well established and global, ensuring easier accessibility across major ports worldwide. Infrastructure and regulation Specific requirements for ammonia bunkering are under discussion by all marine stakeholders This will help green ammonia become readily available for bunkering and distribution once sufficient production and infrastructure are in place. On the other hand, when compared with liquid hydrogen or LNG which can be stored at temperatures of −253°C and −162°C, respectively, liquid ammonia can be stored and transported at −33°C near atmospheric pressure, which allows for easier adaptation of existing fuel infrastructure on ships and at ports. While specific requirements for ammonia bunkering are under discussion by all marine stakeholders, the requirements for shipping ammonia as cargo, including loading and unloading operations, have been established in the marine industry and are covered by the IMO International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) and incorporated in the ABS Rules for Building and Classing Marine Vessels Part 5C Chapter 8 “Vessels Intended to Carry Liquefied Gases in Bulk”. For the use of ammonia as bunker fuel, all segments of the marine industry (including IMO, Class Societies, Port Authorities, and industry agencies) are working to develop requirements and procedures specific to ammonia bunkering operations. Refer to the section “Regulatory Organisation” of this Advisory for the current activities of each marine industry segment. Bunkering Options Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels There are three main methods of bunkering ammonia to ships. Truck-to-ship is the process of transferring ammonia from trucks or truck trailers to a receiving vessel using ammonia as fuel. Typically, the tanks on the truck are pressurised and store ammonia at ambient temperature. To increase bunker capacity and transfer rates, a manifold may be used to connect several trucks simultaneously to supply the receiving vessel. Truck-to-ship transfer operations may provide greater operational flexibility, but at the same time could induce operational restrictions and limitations by the local Authority. Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels, such as container ships, tankers, and bulk carriers, which require large fuel capacities and greater quantities of fuel to be bunkered. Terminal-to-ship bunkering transfers ammonia from an ammonia storage terminal pipeline connected to receiving vessels via a hose assembly or loading arm. Ammonia Safety Ammonia is toxic and reacts violently and explosively with oxidising gases such as chlorine, bromine, acids, and other halogens. When ammonia is inhaled, swallowed or absorbed via skin contact, it reacts with water in the body, producing ammonium hydroxide. Due to these toxicity issues, ammonia is classified as a hazardous substance, with the level and time of exposure being controlled by several national standards. The level of competency needed for each task depends on the role and duties of the individual A combination of both training and operational experience is key to developing the required competencies for ammonia bunkering operations. The level of competency needed for each task depends on the role and responsibilities of the individual. Therefore, the training may vary from person to person. Seafarers on board ships using ammonia fuel should have completed training to attain the abilities that are appropriate to the capacity to be filled, and duties and responsibilities to be taken up. The master, officers, ratings and other personnel on ships using ammonia fuel should be trained and qualified in accordance with regulation V/3 of the STCW Convention and section A-V/3 of the STCW Code, taking into account the specific hazards of ammonia used as fuel. Ship-specific training Ship-specific training is to be reviewed and approved by governing regulatory authorities. The IGF Code provides detailed training requirements for ships that use gases or other low-flashpoint fuels. Ships under the jurisdiction of flag administrations signatory to SOLAS should ensure that seafarers should have the specified certificates of proficiency and the administration shall approve courses and issue endorsements indicating completion of the qualification. All crew must be provided with and be made aware of the emergency procedures and must be trained in any roles and responsibilities they may have. Training, drills and exercises to prepare crews for emergencies are to be provided. Lessons learned from past operations should be incorporated to improve emergency procedures. Procedures should cover all scenarios specific to the ship, type of incident, equipment, and associated areas.
Harbour insights
Carbon capture and storage (CCS) can contribute to decarbonisation of the maritime industry, especially when combined with other approaches. CCS allows ships to continue using fossil fuels while capturing and storing the emitted CO2. It’s a helpful interim approach if a vessel’s immediate transition to alternative fuels is not feasible due to infrastructure limits or technology constraints. CCS can extend a vessel’s operational lifespan, both reducing emissions from existing vessels while avoiding premature scrapping and associated environmental impacts. Technology challenges There are technology challenges, such as higher fuel consumption and process costs for ships As the industry works toward the use of zero-emission fuels such as green hydrogen, ammonia and methanol, CCS offers a more gradual and realistic pathway to decarbonisation. CCS is also an attractive option for long-haul shipping routes where alternative fuel infrastructure may be limited. However, there are technology challenges, such as higher fuel consumption and operation costs for ships. Space constraints are another obstacle considering the needs to operate and install CCS equipment on board ships. Clear and supportive regulation More work is needed to provide secure and reliable long-term storage of captured CO2, which is still under development. Technology advancement and government incentives are also needed to increase the economic viability of Carbon Capture and Storage for ships operators. Clear and supportive regulation paves the way for widespread adoption of CCS in the maritime sector, including standards for capture, transport, and storage. Carbon capture and storage The amine solution, now loaded with CO2, is then sent to a regenerator (stripper) In a CCS system, carbon dioxide (CO2) is captured from a ship’s exhaust gases after the fuel has been burned. This often involves chemical absorption, in which the exhaust gases pass through a solvent that absorbs the CO2. A contactor (absorber) uses an amine solution to react chemically with the CO2, forming a carbamate compound. This effectively removes the CO2 from the flue gas. The amine solution, now loaded with CO2, is then sent to a regenerator (stripper). Heat is applied to the solution, causing the carbamate to decompose, releasing the captured CO2. Onshore storage sites The CO2 is then separated and stored onboard in high-pressure tanks as a liquid, and later offloaded at designated ports for transport to onshore storage sites. There is an energy penalty in the process, since CCS itself requires energy, which can increase fuel consumption and operating costs for the ship. Because onboard storage capacity for captured CO2 can be limited, frequent offloading is required. Adoption timeline for CCS Most CCS projects in the maritime sector are still in the research and development phase In the near term (5 to 10 years), initial deployments of CCS on select vessels will likely focus on niche applications or specific routes. Most CCS projects in the maritime sector are still in the research and development phase. Some pilot projects and demonstrations are underway to test the feasibility and effectiveness of CCS technologies, but large-scale commercial deployments of CCS systems on board ships are still to come. If technological advancements and economic viability improve, CCS could see more widespread adoption in the maritime sector within the next 10 to 20 years, particularly for vessels where alternative fuel options are limited or not yet feasible. The development of a robust infrastructure for the transport and storage of captured CO2 will be crucial for the large-scale deployment of CCS in the maritime. Requirements of CCS systems for maritime use Looking long-term (20 years or more), CCS could become a mature technology integrated into the broader maritime decarbonisation landscape, potentially playing a role alongside other technologies like alternative fuels and energy efficiency measures. Continued research and development will aim to improve the efficiency, cost-effectiveness, and space requirements of CCS systems for maritime use. The development of more efficient and compact CCS systems is crucial for their widespread adoption in the maritime sector. Reducing the costs, including capital expenditures and operational expenses, is also essential. Clear and supportive regulations, including carbon pricing mechanisms and incentives for CCS deployment, will encourage its adoption. Complementary technologies toward decarbonisation Another option is using fuel cells to convert hydrogen or other fuels into electricity for propulsion CCS can be used in conjunction with transitional fuels like Liquefied Natural Gas (LNG), capturing and storing CO2 emissions from LNG-powered vessels to reduce the carbon footprint while the industry transitions to zero-emission fuels. CCS can be particularly valuable for sectors where zero-emission alternatives may not be readily available or feasible, such as long-haul shipping. CCS can also serve as a backstop technology, providing a potential solution for residual emissions from alternative fuel pathways, even if they are considered low-carbon. A range of alternative fuel scenarios drive research and development into new technologies such as biofuels, green hydrogen, ammonia, and methanol. Another possibility is using fuel cells to convert hydrogen or other fuels into electricity for propulsion. Better battery technology, including better capacity and charging infrastructure, is needed. And ship designs must be optimised for alternative fuels, including storage and handling systems. Next stages for CCS The next stage in the development of carbon capture and storage (CCS) for maritime vessels will likely involve full-scale demonstration projects, moving beyond small-scale prototypes and lab tests to real-world applications on commercial vessels. More compact and lightweight systems will be developed to reduce the weight and space requirements on board ships. Viable business models and financial mechanisms are needed to make CCS economically attractive for ship owners. A clear and consistent regulatory framework can incentivise CCS adoption and ensure compliance with environmental standards. There also needs to be more public awareness and understanding of the role of CCS in decarbonising the maritime sector.
Augmented reality (AR) is making waves across various industries, and maritime is no exception. For maritime professionals, AR offers practical, real-time solutions that enhance safety, optimise operations, and improve decision-making both at sea and onshore. Whether it’s helping crews navigate complex environments, assisting in ship maintenance, or providing on-the-job training, AR’s ability to blend digital information with the physical world is proving invaluable in the fast-paced and challenging maritime environment. This article explores the benefits, applications, and potential of AR in the maritime industry. Understanding AR and its intent Augmented reality (AR) overlays digital content—such as data, graphics, and 3D models—onto the real-world environment, enhancing users’ perception of their surroundings. Unlike virtual reality (VR), which creates entirely simulated environments, AR supplements the real world with additional information that can be viewed through devices like smartphones, tablets, or AR glasses. Accuracy, efficiency, and safety The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment In the maritime context, AR intends to enhance the accuracy, efficiency, and safety of various operations. By providing real-time data and visuals, AR allows maritime professionals to make better-informed decisions, whether they’re navigating a vessel through busy waters, inspecting machinery, or managing cargo in a port. The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment, reducing risks, preventing errors, and increasing operational efficiency. AR applications in maritime operations One of the most significant applications of AR in the maritime industry is in navigation. AR can assist ship officers by overlaying critical navigation data—such as chart information, vessel traffic, weather conditions, and obstacles—directly onto the real-time view of the sea. This helps enhance situational awareness, particularly in congested waterways or during low-visibility conditions like fog or storms. With AR, navigators can visualise information directly in their line of sight, minimising the need to shift focus between different instruments or screens. Maintenance and repair operations Maintenance and repair operations are another area where AR has proven to be highly effective. Technicians can use AR glasses or tablets to access real-time information on ship components, including interactive 3D models, schematics, and procedural guides. This allows for faster and more accurate repairs, reducing downtime and the need for specialised training. AR can also connect remote experts with on-site technicians, enabling real-time support and troubleshooting. Training and simulation Crew members can undergo immersive training sessions where they interact with AR-enhanced environments Training and simulation are other critical areas benefiting from AR. New crew members can undergo immersive training sessions where they interact with AR-enhanced environments, practicing tasks such as emergency procedures or cargo handling in a risk-free setting. This improves skill retention and reduces the time required to get new hires up to speed. In ports, AR can assist with cargo management by displaying real-time data on container contents, destination, and status. This streamlines the loading and unloading process, reducing errors and improving overall port efficiency. Benefits of AR for maritime stakeholders The integration of AR technology delivers a wide array of benefits to different maritime stakeholders, from shipowners and operators to port managers and regulators. For shipowners and operators, AR enhances the safety and efficiency of vessel operations. Improved navigation capabilities lead to fewer accidents, while real-time maintenance support reduces the risk of machinery failures and extends equipment lifespan. Immersive, on-the-job learning experiences Additionally, AR can cut training costs by providing immersive, on-the-job learning experiences that don’t require expensive simulators or extended training periods. Port operators also benefit from AR technology. Enhanced cargo management, optimised logistics, and real-time tracking of goods improve turnaround times and reduce operational bottlenecks. With AR’s ability to overlay data onto physical containers or equipment, ports can achieve greater accuracy in inventory management and resource allocation. Real-time data and augmented visuals AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements For manufacturers and engineers, AR enables the visualisation of complex equipment and components in a real-world context. This can facilitate better communication between shipbuilders, designers, and engineers, leading to more accurate construction and faster problem-solving when issues arise. Regulators and maritime authorities can use AR to improve safety inspections and compliance checks. By providing inspectors with real-time data and augmented visuals, AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements more efficiently. Encouraging Collaboration Across the Maritime Ecosystem One of the most exciting aspects of AR is its potential to foster collaboration among various maritime stakeholders. By connecting on-site personnel with remote experts through AR-enabled devices, maritime operators can access specialised knowledge without requiring experts to be physically present. This promotes better teamwork across geographical distances, improving problem-solving and decision-making in real-time. Reduces downtime For example, when a ship experiences technical issues in a remote location, AR allows an engineer onshore to guide a crew member step-by-step through the repair process, using visual overlays and interactive tools to ensure accuracy. This reduces downtime and ensures that operations can continue without the need for costly or time-consuming travel. Reduces errors By combining AR with digital twin technology, maritime professionals can access real-time digital replicas Collaboration is also enhanced in ship design and construction. AR allows shipbuilders, designers, and engineers to visualise and manipulate 3D models in a real-world environment, making it easier to collaborate on complex projects and reduce errors during the construction phase. Moreover, AR can integrate with broader industry initiatives, such as digital twins and automation. By combining AR with digital twin technology, maritime professionals can access real-time digital replicas of ships or port equipment, enabling more effective monitoring, predictive maintenance, and resource management. Misconceptions and challenges in adopting AR Despite its potential, some misconceptions about AR remain within the maritime industry. One common misconception is that AR is solely for high-tech, cutting-edge operations and isn’t suitable for traditional maritime businesses. However, AR technology is highly scalable, and its applications can be adapted to a wide range of maritime operations, from small vessels to large container ships and ports. Another misconception is that AR requires significant upfront investment in expensive hardware and software. Long-term savings While initial costs can be high, particularly for advanced AR glasses and devices, the long-term savings in operational efficiency, reduced training times, and improved safety often outweigh these costs. Additionally, more affordable AR solutions are emerging, making the technology accessible to a broader range of operators. Enhance focus and reduce cognitive load AR devices could create, particularly in high-stress environments like ship navigation or cargo handling There are also concerns about the potential distraction that AR devices could create, particularly in high-stress environments like ship navigation or cargo handling. However, when implemented thoughtfully, AR is designed to enhance focus and reduce cognitive load by delivering critical information directly to the user’s line of sight, rather than requiring them to divert attention to multiple screens or devices. Coordinating AR with Industry Initiatives and Future Trends AR is increasingly being integrated with other technological advancements in the maritime sector, including automation, the Internet of Things (IoT), and digital twin technologies. By providing real-time insights and data visualisation, AR can help facilitate the use of autonomous ships and enhance the monitoring and management of connected maritime systems. As the industry continues to prioritise sustainability, AR can also play a role in promoting greener practices. By optimising navigation routes and improving fuel efficiency, AR can help ships reduce emissions and minimise their environmental impact. AR-enhanced training As the technology continues to evolve, its applications will expand, offering new ways to improve safety Furthermore, AR-enhanced training can focus on eco-friendly practices, reinforcing the maritime industry’s commitment to sustainability. Looking forward, AR will likely play a crucial role in the future of maritime operations. As the technology continues to evolve, its applications will expand, offering new ways to improve safety, efficiency, and collaboration across the industry. AR navigating the challenges of the 21st century Augmented reality is poised to become a transformative tool in the maritime industry, offering tangible benefits in safety, operational efficiency, training, and collaboration. By integrating AR technology into maritime operations, professionals can stay ahead of industry challenges, enhance decision-making, and foster greater collaboration across the global supply chain. With the right approach, AR will not only improve day-to-day operations but also help future-proof the maritime industry as it navigates the challenges of the 21st century. {##Poll1732855978 - What area of maritime operations do you think would benefit the most from augmented reality (AR)?##}
As the maritime industry accelerates its journey toward decarbonisation, the focus on alternative fuels has intensified. E-methane E-methane, a synthetic gas produced using renewable electricity and carbon capture, is emerging as a promising substitute for conventional natural gas. This innovative fuel offers a way to significantly reduce greenhouse gas emissions while leveraging existing liquefied natural gas (LNG) infrastructure. For maritime professionals, the potential benefits of e-methane extend beyond environmental gains, this fuel could revolutionise ship propulsion, enhance regulatory compliance, and help future-proof operations. Understanding e-methane and its intent E-methane is a synthetic, renewable fuel designed to mimic the properties of conventional methane E-methane, also known as synthetic methane, is a carbon-neutral fuel produced through the electrolysis of water using renewable energy sources, such as wind or solar power. The resulting hydrogen is then combined with carbon dioxide captured from industrial emissions or directly from the atmosphere to produce methane. Unlike fossil-based natural gas, e-methane is a synthetic, renewable fuel designed to mimic the properties of conventional methane while minimising the carbon footprint of maritime operations. Reducing fossil fuel dependency The primary intent behind the adoption of e-methane in the maritime industry is to reduce the sector's dependency on fossil fuels and contribute to global climate goals. The fuel’s carbon-neutral lifecycle, combined with the potential for net-zero operations, makes it an attractive option for ship owners and operators looking to meet increasingly stringent environmental regulations. The technology behind e-methane production The production of e-methane involves two critical technologies: electrolysis and carbon capture. Electrolysis is the process of splitting water molecules into hydrogen and oxygen using electricity. When this electricity comes from renewable sources, the resulting hydrogen is considered “green.” This green hydrogen is then synthesised with captured carbon dioxide to create methane, chemically identical to natural gas. Carbon capture technology This approach creates a closed carbon loop where the CO2 produced during combustion is offset by the CO2 used Carbon capture technology is essential for e-methane production. CO2 can be captured from various industrial processes, such as cement production or power generation, or directly from the atmosphere through direct air capture (DAC) technologies. By using this captured CO2 in the production of e-methane, the process effectively recycles carbon that would otherwise contribute to atmospheric greenhouse gases. This approach creates a closed carbon loop where the CO2 produced during combustion is offset by the CO2 used during fuel synthesis, making e-methane a potentially net-zero option for maritime fuel. Applications in the maritime industry E-methane offers significant advantages to the maritime industry, particularly in ship propulsion. The ability to use e-methane as a drop-in replacement for LNG makes it a highly versatile fuel. Existing LNG-powered vessels and bunkering infrastructure can be utilised with minimal modifications, reducing the need for expensive retrofits or new technologies. This compatibility makes e-methane a practical option for maritime operators who have already invested in LNG-fueled ships. Reduction of methane slip Another key application is in the reduction of methane slip, a phenomenon where unburned methane is released into the atmosphere during combustion. Since e-methane is synthesised using captured carbon, its overall environmental impact is reduced, even when factoring in methane slip. In addition to ship propulsion, e-methane could play a role in port operations. Shore-based power generation, which often relies on fossil fuels, could transition to e-methane, reducing emissions from ports and contributing to the overall sustainability of the maritime supply chain. Benefits for maritime stakeholders Shipowners and operators stand to benefit from compliance with future environmental regulations E-methane offers distinct advantages for various maritime stakeholders. Shipowners and operators stand to benefit from compliance with future environmental regulations while continuing to utilise existing LNG technologies. This provides a clear path to decarbonisation without the need for significant capital investments in new fueling systems. Fuel compatibility Port operators and shippers can also benefit from the widespread adoption of e-methane, as it supports cleaner, more sustainable port environments. The fuel's compatibility with LNG infrastructure ensures that ports will not need to invest in entirely new bunkering systems, making the transition to e-methane economically viable for all parties involved. Engine design and fuel systems For manufacturers, the shift to e-methane could drive innovation in engine design and fuel systems, supporting the development of more efficient and environmentally friendly vessels. Additionally, e-methane aligns with the broader goals of regulatory bodies, which are increasingly pushing for the reduction of greenhouse gas emissions from international shipping. Fostering collaboration across maritime Ship owners, manufacturers, port operators, and regulators can work together to create a seamless transition The adoption of e-methane could foster greater collaboration across the maritime ecosystem. Ship owners, manufacturers, port operators, and regulators can work together to create a seamless transition to this carbon-neutral fuel. By sharing data on fuel performance, operational efficiency, and environmental impact, stakeholders can collectively optimise the use of e-methane across the supply chain. International partnerships Collaboration is particularly important when considering the global nature of the maritime industry. International partnerships can help develop standardised e-methane bunkering facilities and supply chains, ensuring that the fuel is available to vessels regardless of their trade routes. Furthermore, e-methane presents an opportunity for maritime stakeholders to align with broader industry initiatives, such as the International Maritime Organisation’s (IMO) decarbonisation targets. By embracing e-methane, the industry can contribute to global efforts to reduce shipping emissions and comply with upcoming regulations. Challenges facing e-methane Despite its potential, there are some misconceptions surrounding e-methane. One common belief is that e-methane production is too expensive or technologically unfeasible for widespread adoption. While the current production costs of e-methane are higher than those of conventional LNG, advances in renewable energy and carbon capture technologies are expected to bring these costs down over time. Additionally, the existing LNG infrastructure reduces the need for new investments, making e-methane a more cost-effective solution than it might initially appear. E-methane vs. ammonia One of the key challenges e-methane poses to ammonia is its ability to integrate with current systems As the maritime industry evaluates alternative fuels, ammonia has gained significant attention as a zero-carbon option. However, e-methane presents a compelling alternative, especially for operators with existing LNG infrastructure. One of the key challenges e-methane poses to ammonia is its ability to integrate with current systems, offering a more gradual transition to decarbonisation. While ammonia has the potential for significant environmental benefits, its widespread adoption would require new bunkering infrastructure and engines designed to handle its corrosive nature and toxicity. Balance of environmental goals The choice between e-methane and ammonia will ultimately depend on the balance of environmental goals, infrastructure costs, and regulatory pressures. E-methane’s compatibility with existing LNG infrastructure may give it an edge in the near term, but ammonia could emerge as a strong competitor as technology advances and regulations become more stringent. E-methane and the future of sustainable shipping Substituting e-methane for natural gas offers the maritime industry a path toward decarbonisation that leverages existing investments in LNG infrastructure while reducing greenhouse gas emissions. For maritime professionals, the transition to e-methane promises not only compliance with environmental regulations but also operational efficiency and cost savings. As the industry collaborates to scale up production and distribution, e-methane could play a critical role in the future of sustainable shipping, competing with other alternative fuels like ammonia in the race to a zero-carbon future.
Case studies
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use
Korea Marine Transport Company Ship Management (KMTC SM) has reported annual fuel savings worth approximately US$540,000 in total after installing Accelleron’s digital engine optimisation solution Tekomar XPERT on 12 Panamax vessels. The fuel savings enabled KMTC SM to reduce its CO2 emissions by about 4,200 tons. Tekomar XPERT delivers engine optimisation recommendations based on thermodynamic insights that aim to bring engines back to the operating performance achieved at “new” conditions. The solution can be applied to any engine and turbocharger make. KMTC SM followed the advisory from Tekomar XPERT, tracked engine performance and benchmarked engines and vessels through Tekomar XPERT’s web portal (Loreka). Carbon Intensity Indicator (CII) ratings The reduced emissions will translate to better CII ratings and lower exposure to carbon pricing KMTC Ship Management General Manager of Environmental Technology, Jin-Seob Lee, said: “Based on the big savings on fuel cost and emission reduction, we aim to install Tekomar XPERT on our remaining 16 self-managed vessels, and will be recommending its installation on 22 other vessels managed by third parties.” Accelleron anticipates that KMTC’s fuel bill will be reduced by around US$1.3 million a year when Tekomar XPERT is deployed across all 50 vessels. The reduced emissions will translate to better Carbon Intensity Indicator (CII) ratings and lower exposure to carbon pricing, including the EU Emissions Trading System, which will apply to shipping from 2024. KMTC SM’s own measurements KMTC SM was able to track improvements in performance thanks to intuitive indicators and actionable insight from Tekomar XPERT. The reduced fuel consumption at the end of the 12-month period highlighted a significant increase in vessel performance over the year. This was verified by KMTC SM’s own measurements. Accelleron Global Head of Sales & Operations, Shailesh Shirsekar, said: “Efficient engines are one of the keys to reducing fuel costs, emissions and carbon price exposure, enabling optimisation without impact on vessel operation. With simple guidance from Tekomar XPERT, ship operators can ensure that the engines are running at their very best, laying the foundation for lower lifecycle costs as well as regulatory compliance.”
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.
Wärtsilä ANCS, part of technology group - Wärtsilä, has delivered to Seaspan, a marine transportation and shipbuilding company, cutting-edge autonomous SmartDock capabilities to the seas. This delivery marks a significant step towards autonomous docking and undocking operations, making maritime activities safer and more efficient. The SmartDock system developed by Wärtsilä ANCS enables Seaspan to perform autonomous docking manoeuvres even in challenging conditions, where currents reach up to two knots. With its advanced technology, SmartDock guarantees consistent, safe, and predictable docking and undocking manoeuvres every time, reducing the need for intensive interaction from the vessel’s captain. Wärtsilä ANCS's laser sensor Wärtsilä ANCS’s scope of work, which was signed in 2021, has fed the liberated SmartDock system Wärtsilä ANCS’s scope of work, which was signed in 2021, includes providing the autonomous SmartDock system, including track development for autodocking at Tilbury, Duke Point, and Swartz Bay ports in Canada. Notably, the SmartDock system employs an advanced UKF (Unscented Kalman Filter) estimator, combining sensor measurements from various sources, such as GNSS (Global Navigation Satellite System) and Wärtsilä ANCS's laser sensor Cyscan AS, to calculate precise position and rate estimates of the vessel's motion. Advanced controller allocates thrust and steering commands This data is then compared to a preprogrammed ideal trajectory of the vessel, and the advanced controller allocates thrust and steering commands, ensuring safe and consistent autonomous docking and undocking manoeuvres. The commissioning of the Seaspan Trader cargo vessel has just been completed, with the Seaspan Transporter cargo vessel scheduled to be commissioned in late 2023/early 2024. These vessels, equipped with the SmartDock system, will operate in the waters of British Columbia, Canada. Wärtsilä and Seaspan partnership “Wärtsilä ANCS is excited to continue supporting Seaspan and build on an already strong working relationship. We look forward to the potential implementation of the SmartDock product across some other vessels in Seaspan's ferry fleet, further advancing the automation and efficiency of maritime operations,” commented Klaus Egeberg, Director, Dynamic Positioning, Wärtsilä ANCS. “Seaspan is proud to lead the charge in this technological advancement in vessel manoeuvring. The integration of Wärtsilä ANCS's SmartDock system into Seaspan Trader exemplifies our unwavering commitment to excellence and innovation in maritime operations,” says Alexander Treharne, Integration Engineer, Seaspan.
Båtbygg AS has placed an order with Teknotherm for a complete ammonia freezing system for Austral Fisheries’ new longline fishing vessel. The vessel is designed by Marin Teknikk AS for operation in the Antarctic Ocean, surrounded by some of the world’s harshest weather conditions. Teknotherm freezing system The newbuild no. 009 and named ‘Austral Odyssey’ will have a length of 70 metres The newbuild no. 009 and named ‘Austral Odyssey’ will have a length of 70 metres and a breadth of 14.6 metres. Delivery of the ship will be in December 2025. Freezing-in of products will be by blast freezers and plate freezers, all served by the ammonia freezing machinery, which will also keep the storage hold and bait hold at low temperature. Austral Fisheries Austral Fisheries owns and operates one of Australia’s largest fleets of fishing vessels. The fleet consists of 18 vessels with different areas of operation and catch, from toothfish in the south to prawns and tropical reef fish in the north. Austral Fisheries took delivery of the fishing vessel MS ‘Cape Arkona’ from Båtbygg AS in 2020, which also features a complete freezing system from Teknotherm, and they are proud to once again be chosen as a supplier to Båtbygg and Austral Fisheries.