Crews
Inmarsat Maritime, a Viasat company, has agreed a deal with Anthony Veder to upgrade the pioneering gas shipping company’s entire fleet to Inmarsat NexusWave. Purpose-built for the specialised transport of gases, including petrochemical gases and liquefied natural gas (LNG) and easily identifiable by their ‘Coral’ prefix, Anthony Veder ships operate in both coastal and deep-sea environments, making multi-dimensional high-speed connectivity essential for seamless communications...
Technology pioneer ABB, and the CMA CGM Group, a player in sea, land, air and logistics solutions, are collaborating on a new parametric roll algorithm to improve ship safety. The solution integrates a theoretical framework developed by CMA CGM into the ABB Ability™ OCTOPUS Marine Advisory system. Challenge to ship safety New algorithm will help enhance operational safety by reducing the risk of accidents Parametric rolling has been a challenge to ship safety for decades. Particularly...
Brunvoll has signed a contract with VARD for the delivery of a comprehensive package of propulsion and manoeuvring thrusters for five Walk-2-Work Service Operation Vessels, W2W SOVs. The vessels are for an undisclosed international owner. Brunvoll’s delivery for each vessel consists of two azimuth propulsion thrusters, two retractable azimuth thrusters, and two tunnel thrusters. The vessels will also feature Brunvoll’s Propulsion and Thruster Control system, BruCon PTC, for efficien...
Fincantieri, one of the world's pioneer groups in high-complexity shipbuilding, and the Guardia di Finanza signed a Memorandum of Understanding aimed at strengthening cooperation to prevent and fight criminal infiltrations and irregularities in the economic and production sectors. The agreement establishes a joint effort to protect legality, with a focus on preventing and combating economic and financial crimes, fraud, corruption, and illegal labor practices. Enhancing transparency and securit...
Current Senior Vice President Hayato Suga has been appointed as President & CEO as well as Representative Director of ClassNK and current Corporate Officer Fumihiko Higashi has been appointed as Executive Vice President, effective 21 March 2025. Former President & CEO Hiroaki Sakashita has been appointed as Chairman of the Board of Directors, while former Chairman of the Board of Directors Koichi Fujiwara has assumed the position of Advisor to the Society. Challenges and digital transf...
Orca AI, a pioneer in maritime technology, celebrates a major milestone as Seaspan Corporation, a containership powerhouse, integrates its cutting-edge SeaPod digital watchkeeper across its entire fleet, to support significant safety improvements and operational cost savings. Rooted in a robust safety culture As part of its digitalisation strategy, Seaspan began using Orca AI's SeaPod digital watchkeeper on select vessels to enhance situational awareness for navigation. An analysis of Seaspan...
News
The hull of yard number (Yno) 321 for BS Offshore arrived at Ulstein Verft. This marks the beginning of a new phase in the shipbuilding process. The vessel is designed by Ulstein Design & Solutions AS for ‘walk-to-work’ (W2W) operations, where personnel walks via a motion-compensated gangway from the ship to a wind turbine. Hull arrival at Ulstein Verft The hull arrival at Ulstein Verft marks a new phase, which includes securing, painting While the hull has been under construction at the CRIST yard in Poland, closely monitored by a site team from Ulstein Verft, the designers and engineers at the various Ulstein companies in Norway and Poland have been working on finalising the detailed drawings for the ship. The hull arrival at Ulstein Verft marks a new phase, which includes securing, painting, outfitting, piping, equipment installations, electrical work, and system integration. Progress and collaboration of the vessel The vessel is sister to Yno 320, launched at Ulstein Verft on 23 February. “We are pleased to see the journey toward completing the second CSOV is progressing and look forward to the continued progress and collaboration in bringing this vessel, designed with efficiency, safety, and sustainability at its core, to life”, says Matthias Müller, Managing Director BS Offshore. TWIN X-STERN CSOV series The vessel will also have a diesel-electric propulsion system with substantial battery energy storage Like its predecessor, the newbuild is part of the innovative TWIN X-STERN CSOV series, known for its exceptional operational performance and seakeeping abilities. During the outfitting phase, the vessel will be equipped with advanced technology, including a 3D-compensated crane and a gangway, ensuring safe and efficient personnel and cargo transfer to offshore wind turbine facilities. The vessel will also have a diesel-electric propulsion system with substantial battery energy storage, significantly reducing the environmental footprint. She is prepared for methanol as a future fuel. Offshore wind sector After her delivery in 2025, the vessel will be ready to support the offshore wind sector with modern, high-comfort accommodation for up to 132 crew and clients. This is Ulstein's fifth W2W vessel for BS Offshore. All have been designed by Ulstein Design & Solutions AS and constructed at Ulstein Verft. BS Offshore is a pioneering ship owner, and Ulstein is proud to continue the partnership, contributing to the advancement of sustainable maritime solutions.
Nor-Shipping 2025, taking place 2-6 June in Oslo and Lillestrøm, has announced a major partnership with Emirates. The pioneer airline has signed as Lounge Partner, taking charge of the luxurious Emirates Lounge at the exhibition centre, while also offering Nor-Shipping participants and visitors exclusive fares. Exclusive benefits for attendees A first-class meeting place with exclusive benefits, and premium hospitality elevating the Nor-Shipping experience"Emirates is a global brand known for quality and service, and we are proud to have them as our Lounge Partner in 2025. Together, we will create a first-class meeting place for our participants, offering comfort, networking opportunities and exclusive benefits", says Sidsel Nordvik, CEO of Nor-Shipping. Attendees booking return flights from Emirates gateway cities to Oslo will be able to access a special 10% discount on Flex and Flex Plus in Business and Economy Class, and 5% off Saver tickets in Business and Economy Class. In addition, Emirates Skywards Platinum members will enjoy free lounge access during the week, enjoying a unique location serving delicious drinks and snacks, while offering a space for business and social meetings with a relaxed, friendly and informal feel. Perfect partners Nor-Shipping plays a crucial role in driving the future of ocean and maritime industries, fostering global connections"The ocean and maritime industries are integral to the future well-being and development of global society, and Nor-Shipping is essential as a platform for enabling and supporting their progress," says Terje Grue, Emirates Country Manager for Norway and Iceland. The synergies between their global reach and ours make this partnership a perfect fit. This connect people, businesses, and nations with comfort and quality service. Now, take a look forward to bringing decision-makers to this unique event and supporting them on the ground to foster business, deals, and sustainable maritime development, Grue adds. Growing excitement Nor-Shipping is expected to attract in excess of 50,000 participants this June, when it celebrates its 60th anniversary, with exhibitors from all over the globe spanning the full spectrum of maritime and ocean-related business. In addition to the exhibition, a full conference programme – including The Ocean Leadership Conference, The Ocean Invest Conference, Blue Talks, and the Deepsea Minerals Conference, to name a selection – and social and networking events will ensure something for everybody. Nor-Shipping travel window The travel period for delegates travelling to Nor-Shipping starts five calendar days prior to the official start date and ends 15 calendar days after the last official day of the event. Both the out-bound flight and return flight must be taken during this period.
The Maritime Technologies Forum (MTF) has published a comprehensive report titled "Safe Carriage of Electric Vehicles," addressing the critical issue of transporting electric vehicles (EVs) on Pure Car and Truck Carrier (PCTC) vessels. With the increasing number of EVs being transported on vessels and rising safety concerns regarding onboard EV fires, the industry needs to be better prepared to detect, prevent and react to fires on board. Characteristics of EV fires There are no international regulations specifically dedicated to the safe carriage of EVs Currently, there are no international regulations specifically dedicated to the safe carriage of EVs. While some national and regional governmental organisations have issued their own guidelines, the IMO is still in the process of developing mandatory regulations for the transportation of new energy vehicles, including EVs, with a target completion year of 2027. This latest report offers detailed insights into the characteristics of EV fires and provides a framework for considerations necessary to supplement the safe carriage of EVs. The report further highlights the necessity of measures such as early detection, prevention of fire spread, firefighting, evacuation, training, and drills. Key takeaways from the report Early Detection: The importance of detecting heated EV batteries (EVBs) early, potentially through a Battery Management System (BMS) on each vehicle that can release alarms and send alerts to the ship's systems. Prevention of Explosion: Addressing the release of flammable gases during thermal runaway and the need for explosion-proof electrical equipment on the upper deck. Fire Protection and Prevention of Fire Spread: Emphasizing the isolation of fires, cooling of EVs, and the need for enhanced structural fire protection to ensure safe evacuation of the crew Manual Firefighting: Portable firefighting equipment should be deployed in the early stages of a fire and removing excess water during operations will be important to maintain vessel stability. Fixed Firefighting Systems: The comparative review of the characteristics of fixed fire extinguishing systems in vehicle space, as required by SOLAS II-2/Reg.20, was made in an impartial manner, as they each have various advantages and disadvantages. Safety of Crew During Firefighting: Highlighting the importance of understanding fire characteristics and car deck obstructions to proceed with manual firefighting and ensure crew safety during firefighting operations. Safety Management System – Training and Drill: The Safety Management System (SMS) for PCTCs carrying EVs should be strengthened to address characteristics of EVs and EV fires. Step toward safer transportation "This report is a significant step toward safer transportation of electric vehicles," said Lars Lippuner, Director of UK Customer Maritime Services at the UK Maritime and Coastguard Agency (MCA). "Our goal with this report is to provide the industry with the necessary information to develop effective regulations and safety measures." Unique challenges by EV fires Hiroaki Sakashita, President & CEO, ClassNK, added, "By addressing the unique challenges posed by EV fires, we aim to enhance the safety of maritime operations and protect crews, ships and cargoes." "This report serves as a starting point for the development of safe carriage practices for EVs and aims to provide valuable information to regulators and industry stakeholders for further development.”
Inmarsat Maritime, a Viasat company, has signed an agreement with Solvang to equip the company’s fleet with Inmarsat’s NexusWave fully managed bonded connectivity service to support the pioneering gas shipping company’s evolving crew and business connectivity requirements. Solvang’s fleet, which includes six semi-refrigerated ethylene carriers, eight large gas carriers, and 13 very large gas carriers (including seven newbuilds), depends on reliable satellite connectivity. Data and global coverage Inmarsat’s NexusWave will provide Solvang with high-speed, reliable service, along with unlimited data This connectivity is crucial for running cloud-based business applications and video conferencing, as well as ensuring that crew members can stay in touch with their family and friends. Inmarsat’s NexusWave will provide Solvang with high-speed, reliable service, along with unlimited data and global coverage, thereby supporting the Norway-based company’s evolving connectivity demands. NexusWave network availability The fully managed NexusWave service combines LEO, GEO, LTE, and L-band network underlays in one bonded connection to achieve maximum download speeds of up to 340 megabits per second, maximum upload speeds of up to 80 Mbps, and network availability exceeding 99.9%. Real-life tests have also shown the quality of a video conference remains virtually unaffected by the availability or performance of a single underlay, with the solution dynamically adjusting traffic routing to maintain a seamless and uninterrupted experience. NexusWave vessel’s location NexusWave ensures managed version levels regardless of the vessel’s location or needs Leveraging unique network bonding technology, NexusWave ensures managed performance levels regardless of the vessel’s location or requirements, with full transparency on the total cost of ownership. Terje Skaar, Superintendent - Electro, Solvang ASA, commented: “In a rapidly evolving maritime industry, our operations are increasingly reliant on cloud-based solutions and video conferencing, while our seafarers expect a home-like Internet experience on board the ship. With NexusWave, our vessels will be seamlessly connected to high-speed Internet at all times – with no unexpected costs and a single point of contact for support and service.” NexusWave’s performance on board Evaluating NexusWave’s performance on board the Solvang very large gas carrier Clipper Explorer, vessel Master reported: “I only have positive things to say about NexusWave." "Since the service was installed, our online applications have been running smoothly, with higher connection speeds than ever, no downtime, and not a single issue reported by crew.” Benefits of seamless business communications “Initial feedback from vessels equipped with NexusWave vessels has been very positive,” said Christopher Hansen, Sales Manager, Inmarsat Maritime. “We have verified the service’s exceptional speed and reliability through rigorous real-world testing. Now, shipping operators are experiencing the benefits of seamless business communications and home-like connectivity for crew. We also see that ship owners appreciate the convenience and simplicity of partnering with a single, trusted provider at a time when shipping operations increasingly depend on the power of multiple networks.”
As the shipping industry continues its transition to carbon-neutral fuels, ammonia and hydrogen are emerging as possible fuel options, however mandatory regulations governing their use are not yet in place. DNV’s latest white paper, Safe introduction of alternative fuels – Focus on ammonia and hydrogen as ship fuels, provides shipowners with insights and tools to navigate the evolving regulatory landscape and safely implement these fuels. Relevant safety challenges Both hydrogen and ammonia have properties that introduce new safety risks, triggering the need for increased focus on safety in ship design, construction, and operation. However, the lack of specific mandatory international regulations for ships running on these fuels is a barrier to their widespread adoption. Both hydrogen and ammonia have properties that introduce new safety risks With it’s latest white paper DNV aims to support customers in implementing these fuels by providing increased predictability through classification rules and early dialogue with Flag Administrations. The paper also outlines the relevant safety challenges and considers the industry's efforts to ensure safe adoption and operation of these fuels at sea. Joint development project Knut Ørbeck-Nilssen, CEO Maritime at DNV said: "In Maritime’s journey towards decarbonisation, there is no one-size-fits-all solution. Hydrogen and ammonia are emerging as possible solutions, and we are already seeing a growing newbuilding orderbook. To scale them up and get the benefits of the zero-carbon fuels, we will need, careful planning, technical expertise, upskilling of seafarers and deeper collaboration across the industry and beyond." DNV is several initiatives to support the development and adoption of ammonia and hydrogen as marine fuels. These include the Nordic Roadmap for Future Fuels project, the Green Shipping Programme, and the MarHySafe joint development project. Making organisational changes Linda Hammer, Principal Engineer at DNV and lead author of the whitepaper, stated: "To safely operate ships using hydrogen or ammonia as fuel, ensuring that the crew understands the specific hazards of these fuels and the safety features built into the design is vital. This will require updates to the safety management system, building in detailed operating procedures, comprehensive training for up-skilling personnel, and potentially making organisational changes. All of which are essential for developing a robust safety culture throughout the organisation." DNV has developed prescriptive classification rules as far as possible, aimed at ensuring increased predictability for owners, designers, and shipyards. The first edition of the classification rules for ammonia-fuelled ships was published in 2021, and the rules for hydrogen-fuelled ships were published in July 2024.
Inmarsat Maritime, a Viasat company, has verified its fully managed bonded connectivity service, NexusWave, achieved maximum download speeds of 330–340 megabits per second, with maximum upload speeds of 70–80 Mbps, in real world tests. The trials demonstrated average download and upload speeds of 120–150 Mbps and 20–45 Mbps respectively, with network availability on board NexusWave vessels over 99.99%. Inmarsat Maritime’s NexusWave In addition to unparalleled speeds, the network-bonding plan provides superior reliability and redundancy Unlike the load balancing which hybrid connectivity solutions typically use to deliver bandwidth via the best available underlay network, Inmarsat Maritime’s NexusWave combines multiple underlays in one bonded connection. The solution allows applications to leverage the aggregate capacity of all available networks rather than relying on one network at a time. In addition to unparalleled speeds, the unique network-bonding approach provides superior reliability and redundancy. Maritime connectivity service For instance, in real-life testing, the quality of a video conference remains virtually unaffected by the availability or quality of a single network underlay. Leveraging bonding technology, NexusWave dynamically adjusts traffic routeing to maintain a seamless and uninterrupted experience. “The results of our real-world tests demonstrate, in the clearest of terms, the peerless performance of NexusWave as a fully managed bonded maritime connectivity service,” commented Ben Palmer, President, Inmarsat Maritime. Power of network bonding Palmer added: “The ability to achieve speeds of 340 Mbps derives from the power of network bonding within NexusWave: no individual underlay network within the package can reach these speeds alone." "In NexusWave, Inmarsat’s maritime customers secure a unique value proposition: the capacity of multiple solutions with the convenience of a single provider.” Inmarsat Maritime experts The solution ensures managed performance levels regardless of the vessel’s location or needs Designed to provide ‘connected confidence’, NexusWave also delivers unlimited data, global coverage, and enterprise-grade firewall security, while Inmarsat Maritime experts offer round-the-clock technical support to customers worldwide. As a unified service, the solution ensures managed performance levels regardless of the vessel’s location or requirements, with full transparency on total cost of ownership. ViaSat-3 Ka-band service In a move intended to further increase aggregated connectivity speeds, the future-proof solution will integrate the next-generation ultra-high capacity, high-speed ViaSat-3 Ka-band service following its entry into service. “Part of what makes NexusWave so compelling is its ability to seamlessly integrate additional technologies and networks as they become available,” added Ben Palmer. “This ensures that the service continuously improves over time, giving customers complete connected confidence amid evolving challenges and requirements.”
The hull of yard number (Yno) 321 for BS Offshore arrived at Ulstein Verft. This marks the beginning of a new phase in the shipbuilding process. The vessel is designed by Ulstein Design & Solutions AS for ‘walk-to-work’ (W2W) operations, where personnel walks via a motion-compensated gangway from the ship to a wind turbine. Hull arrival at Ulstein Verft The hull arrival at Ulstein Verft marks a new phase, which includes securing, painting While the hull has been under construction at the CRIST yard in Poland, closely monitored by a site team from Ulstein Verft, the designers and engineers at the various Ulstein companies in Norway and Poland have been working on finalising the detailed drawings for the ship. The hull arrival at Ulstein Verft marks a new phase, which includes securing, painting, outfitting, piping, equipment installations, electrical work, and system integration. Progress and collaboration of the vessel The vessel is sister to Yno 320, launched at Ulstein Verft on 23 February. “We are pleased to see the journey toward completing the second CSOV is progressing and look forward to the continued progress and collaboration in bringing this vessel, designed with efficiency, safety, and sustainability at its core, to life”, says Matthias Müller, Managing Director BS Offshore. TWIN X-STERN CSOV series The vessel will also have a diesel-electric propulsion system with substantial battery energy storage Like its predecessor, the newbuild is part of the innovative TWIN X-STERN CSOV series, known for its exceptional operational performance and seakeeping abilities. During the outfitting phase, the vessel will be equipped with advanced technology, including a 3D-compensated crane and a gangway, ensuring safe and efficient personnel and cargo transfer to offshore wind turbine facilities. The vessel will also have a diesel-electric propulsion system with substantial battery energy storage, significantly reducing the environmental footprint. She is prepared for methanol as a future fuel. Offshore wind sector After her delivery in 2025, the vessel will be ready to support the offshore wind sector with modern, high-comfort accommodation for up to 132 crew and clients. This is Ulstein's fifth W2W vessel for BS Offshore. All have been designed by Ulstein Design & Solutions AS and constructed at Ulstein Verft. BS Offshore is a pioneering ship owner, and Ulstein is proud to continue the partnership, contributing to the advancement of sustainable maritime solutions.
Nor-Shipping 2025, taking place 2-6 June in Oslo and Lillestrøm, has announced a major partnership with Emirates. The pioneer airline has signed as Lounge Partner, taking charge of the luxurious Emirates Lounge at the exhibition centre, while also offering Nor-Shipping participants and visitors exclusive fares. Exclusive benefits for attendees A first-class meeting place with exclusive benefits, and premium hospitality elevating the Nor-Shipping experience"Emirates is a global brand known for quality and service, and we are proud to have them as our Lounge Partner in 2025. Together, we will create a first-class meeting place for our participants, offering comfort, networking opportunities and exclusive benefits", says Sidsel Nordvik, CEO of Nor-Shipping. Attendees booking return flights from Emirates gateway cities to Oslo will be able to access a special 10% discount on Flex and Flex Plus in Business and Economy Class, and 5% off Saver tickets in Business and Economy Class. In addition, Emirates Skywards Platinum members will enjoy free lounge access during the week, enjoying a unique location serving delicious drinks and snacks, while offering a space for business and social meetings with a relaxed, friendly and informal feel. Perfect partners Nor-Shipping plays a crucial role in driving the future of ocean and maritime industries, fostering global connections"The ocean and maritime industries are integral to the future well-being and development of global society, and Nor-Shipping is essential as a platform for enabling and supporting their progress," says Terje Grue, Emirates Country Manager for Norway and Iceland. The synergies between their global reach and ours make this partnership a perfect fit. This connect people, businesses, and nations with comfort and quality service. Now, take a look forward to bringing decision-makers to this unique event and supporting them on the ground to foster business, deals, and sustainable maritime development, Grue adds. Growing excitement Nor-Shipping is expected to attract in excess of 50,000 participants this June, when it celebrates its 60th anniversary, with exhibitors from all over the globe spanning the full spectrum of maritime and ocean-related business. In addition to the exhibition, a full conference programme – including The Ocean Leadership Conference, The Ocean Invest Conference, Blue Talks, and the Deepsea Minerals Conference, to name a selection – and social and networking events will ensure something for everybody. Nor-Shipping travel window The travel period for delegates travelling to Nor-Shipping starts five calendar days prior to the official start date and ends 15 calendar days after the last official day of the event. Both the out-bound flight and return flight must be taken during this period.
The Maritime Technologies Forum (MTF) has published a comprehensive report titled "Safe Carriage of Electric Vehicles," addressing the critical issue of transporting electric vehicles (EVs) on Pure Car and Truck Carrier (PCTC) vessels. With the increasing number of EVs being transported on vessels and rising safety concerns regarding onboard EV fires, the industry needs to be better prepared to detect, prevent and react to fires on board. Characteristics of EV fires There are no international regulations specifically dedicated to the safe carriage of EVs Currently, there are no international regulations specifically dedicated to the safe carriage of EVs. While some national and regional governmental organisations have issued their own guidelines, the IMO is still in the process of developing mandatory regulations for the transportation of new energy vehicles, including EVs, with a target completion year of 2027. This latest report offers detailed insights into the characteristics of EV fires and provides a framework for considerations necessary to supplement the safe carriage of EVs. The report further highlights the necessity of measures such as early detection, prevention of fire spread, firefighting, evacuation, training, and drills. Key takeaways from the report Early Detection: The importance of detecting heated EV batteries (EVBs) early, potentially through a Battery Management System (BMS) on each vehicle that can release alarms and send alerts to the ship's systems. Prevention of Explosion: Addressing the release of flammable gases during thermal runaway and the need for explosion-proof electrical equipment on the upper deck. Fire Protection and Prevention of Fire Spread: Emphasizing the isolation of fires, cooling of EVs, and the need for enhanced structural fire protection to ensure safe evacuation of the crew Manual Firefighting: Portable firefighting equipment should be deployed in the early stages of a fire and removing excess water during operations will be important to maintain vessel stability. Fixed Firefighting Systems: The comparative review of the characteristics of fixed fire extinguishing systems in vehicle space, as required by SOLAS II-2/Reg.20, was made in an impartial manner, as they each have various advantages and disadvantages. Safety of Crew During Firefighting: Highlighting the importance of understanding fire characteristics and car deck obstructions to proceed with manual firefighting and ensure crew safety during firefighting operations. Safety Management System – Training and Drill: The Safety Management System (SMS) for PCTCs carrying EVs should be strengthened to address characteristics of EVs and EV fires. Step toward safer transportation "This report is a significant step toward safer transportation of electric vehicles," said Lars Lippuner, Director of UK Customer Maritime Services at the UK Maritime and Coastguard Agency (MCA). "Our goal with this report is to provide the industry with the necessary information to develop effective regulations and safety measures." Unique challenges by EV fires Hiroaki Sakashita, President & CEO, ClassNK, added, "By addressing the unique challenges posed by EV fires, we aim to enhance the safety of maritime operations and protect crews, ships and cargoes." "This report serves as a starting point for the development of safe carriage practices for EVs and aims to provide valuable information to regulators and industry stakeholders for further development.”
Inmarsat Maritime, a Viasat company, has signed an agreement with Solvang to equip the company’s fleet with Inmarsat’s NexusWave fully managed bonded connectivity service to support the pioneering gas shipping company’s evolving crew and business connectivity requirements. Solvang’s fleet, which includes six semi-refrigerated ethylene carriers, eight large gas carriers, and 13 very large gas carriers (including seven newbuilds), depends on reliable satellite connectivity. Data and global coverage Inmarsat’s NexusWave will provide Solvang with high-speed, reliable service, along with unlimited data This connectivity is crucial for running cloud-based business applications and video conferencing, as well as ensuring that crew members can stay in touch with their family and friends. Inmarsat’s NexusWave will provide Solvang with high-speed, reliable service, along with unlimited data and global coverage, thereby supporting the Norway-based company’s evolving connectivity demands. NexusWave network availability The fully managed NexusWave service combines LEO, GEO, LTE, and L-band network underlays in one bonded connection to achieve maximum download speeds of up to 340 megabits per second, maximum upload speeds of up to 80 Mbps, and network availability exceeding 99.9%. Real-life tests have also shown the quality of a video conference remains virtually unaffected by the availability or performance of a single underlay, with the solution dynamically adjusting traffic routing to maintain a seamless and uninterrupted experience. NexusWave vessel’s location NexusWave ensures managed version levels regardless of the vessel’s location or needs Leveraging unique network bonding technology, NexusWave ensures managed performance levels regardless of the vessel’s location or requirements, with full transparency on the total cost of ownership. Terje Skaar, Superintendent - Electro, Solvang ASA, commented: “In a rapidly evolving maritime industry, our operations are increasingly reliant on cloud-based solutions and video conferencing, while our seafarers expect a home-like Internet experience on board the ship. With NexusWave, our vessels will be seamlessly connected to high-speed Internet at all times – with no unexpected costs and a single point of contact for support and service.” NexusWave’s performance on board Evaluating NexusWave’s performance on board the Solvang very large gas carrier Clipper Explorer, vessel Master reported: “I only have positive things to say about NexusWave." "Since the service was installed, our online applications have been running smoothly, with higher connection speeds than ever, no downtime, and not a single issue reported by crew.” Benefits of seamless business communications “Initial feedback from vessels equipped with NexusWave vessels has been very positive,” said Christopher Hansen, Sales Manager, Inmarsat Maritime. “We have verified the service’s exceptional speed and reliability through rigorous real-world testing. Now, shipping operators are experiencing the benefits of seamless business communications and home-like connectivity for crew. We also see that ship owners appreciate the convenience and simplicity of partnering with a single, trusted provider at a time when shipping operations increasingly depend on the power of multiple networks.”
As the shipping industry continues its transition to carbon-neutral fuels, ammonia and hydrogen are emerging as possible fuel options, however mandatory regulations governing their use are not yet in place. DNV’s latest white paper, Safe introduction of alternative fuels – Focus on ammonia and hydrogen as ship fuels, provides shipowners with insights and tools to navigate the evolving regulatory landscape and safely implement these fuels. Relevant safety challenges Both hydrogen and ammonia have properties that introduce new safety risks, triggering the need for increased focus on safety in ship design, construction, and operation. However, the lack of specific mandatory international regulations for ships running on these fuels is a barrier to their widespread adoption. Both hydrogen and ammonia have properties that introduce new safety risks With it’s latest white paper DNV aims to support customers in implementing these fuels by providing increased predictability through classification rules and early dialogue with Flag Administrations. The paper also outlines the relevant safety challenges and considers the industry's efforts to ensure safe adoption and operation of these fuels at sea. Joint development project Knut Ørbeck-Nilssen, CEO Maritime at DNV said: "In Maritime’s journey towards decarbonisation, there is no one-size-fits-all solution. Hydrogen and ammonia are emerging as possible solutions, and we are already seeing a growing newbuilding orderbook. To scale them up and get the benefits of the zero-carbon fuels, we will need, careful planning, technical expertise, upskilling of seafarers and deeper collaboration across the industry and beyond." DNV is several initiatives to support the development and adoption of ammonia and hydrogen as marine fuels. These include the Nordic Roadmap for Future Fuels project, the Green Shipping Programme, and the MarHySafe joint development project. Making organisational changes Linda Hammer, Principal Engineer at DNV and lead author of the whitepaper, stated: "To safely operate ships using hydrogen or ammonia as fuel, ensuring that the crew understands the specific hazards of these fuels and the safety features built into the design is vital. This will require updates to the safety management system, building in detailed operating procedures, comprehensive training for up-skilling personnel, and potentially making organisational changes. All of which are essential for developing a robust safety culture throughout the organisation." DNV has developed prescriptive classification rules as far as possible, aimed at ensuring increased predictability for owners, designers, and shipyards. The first edition of the classification rules for ammonia-fuelled ships was published in 2021, and the rules for hydrogen-fuelled ships were published in July 2024.
Inmarsat Maritime, a Viasat company, has verified its fully managed bonded connectivity service, NexusWave, achieved maximum download speeds of 330–340 megabits per second, with maximum upload speeds of 70–80 Mbps, in real world tests. The trials demonstrated average download and upload speeds of 120–150 Mbps and 20–45 Mbps respectively, with network availability on board NexusWave vessels over 99.99%. Inmarsat Maritime’s NexusWave In addition to unparalleled speeds, the network-bonding plan provides superior reliability and redundancy Unlike the load balancing which hybrid connectivity solutions typically use to deliver bandwidth via the best available underlay network, Inmarsat Maritime’s NexusWave combines multiple underlays in one bonded connection. The solution allows applications to leverage the aggregate capacity of all available networks rather than relying on one network at a time. In addition to unparalleled speeds, the unique network-bonding approach provides superior reliability and redundancy. Maritime connectivity service For instance, in real-life testing, the quality of a video conference remains virtually unaffected by the availability or quality of a single network underlay. Leveraging bonding technology, NexusWave dynamically adjusts traffic routeing to maintain a seamless and uninterrupted experience. “The results of our real-world tests demonstrate, in the clearest of terms, the peerless performance of NexusWave as a fully managed bonded maritime connectivity service,” commented Ben Palmer, President, Inmarsat Maritime. Power of network bonding Palmer added: “The ability to achieve speeds of 340 Mbps derives from the power of network bonding within NexusWave: no individual underlay network within the package can reach these speeds alone." "In NexusWave, Inmarsat’s maritime customers secure a unique value proposition: the capacity of multiple solutions with the convenience of a single provider.” Inmarsat Maritime experts The solution ensures managed performance levels regardless of the vessel’s location or needs Designed to provide ‘connected confidence’, NexusWave also delivers unlimited data, global coverage, and enterprise-grade firewall security, while Inmarsat Maritime experts offer round-the-clock technical support to customers worldwide. As a unified service, the solution ensures managed performance levels regardless of the vessel’s location or requirements, with full transparency on total cost of ownership. ViaSat-3 Ka-band service In a move intended to further increase aggregated connectivity speeds, the future-proof solution will integrate the next-generation ultra-high capacity, high-speed ViaSat-3 Ka-band service following its entry into service. “Part of what makes NexusWave so compelling is its ability to seamlessly integrate additional technologies and networks as they become available,” added Ben Palmer. “This ensures that the service continuously improves over time, giving customers complete connected confidence amid evolving challenges and requirements.”


Expert commentary
President Donald Trump has already made plenty of headlines since taking up his second term in the White House, including with the announcement of numerous new tariffs on imports. The 47th United States President issued three executive orders on February 1st 2025, just days after his inauguration, which directed the US to impose an additional 25 percent ad valorem rate of duty on imports from Canada and Mexico, as well as ten percent on imports from China. How Trump’s 2nd term as US President Cleveland Containers has analysed the early reactions to these announcements Excluding Canadian energy resources exports – which instead will be hit with a ten percent tariff – the tariffs have been applied to all imports which are either entered for consumption or withdrawn from warehouse for consumption on or after 12:01 am Eastern Standard Time on February 4th 2025. President Trump also told reporters on February 8th 2025 that a 25 percent tariff on all American steel and aluminium imports was coming into effect across the US during February. Leading 40ft shipping container supplier Cleveland Containers has analysed the early reactions to these announcements and how President Trump’s second term as US President could affect the world’s shipping industry, especially when looking back at his first term. Reaction to President Trump’s tariff announcements Mexico, Canada and China were all quick to react to President Trump’s announcement of tariffs on imports. Mexican President Claudia Sheinbaum said her country would vow for resilience against the measures, while a senior government official in Canada said that their country would challenge the decision by taking legal action through the necessary international bodies. China has also said it would be challenging the tariffs at the World Trade Organisation. According to the country’s finance ministry, as reported on by Geopolitical Intelligence Services, Beijing were moving to place levies of 15 percent on American coal and liquefied natural gas, as well as levies of ten percent on crude oil, certain vehicles and farm equipment. Beginning of making America rich again When it comes to the announcement of the tariff on all American steel and aluminium imports, President Trump told reporters in the Oval Office: "This is a big deal, the beginning of making America rich again. Our nation requires steel and aluminium to be made in America, not in foreign lands.” Francois-Phillippe Champagne, the Minister of Innovation in Canada, stated that the tariffs were "totally unjustified" though, before adding in a post on X: "Canadian steel and aluminium support key industries in the US, from defence, shipbuilding and auto. We will continue to stand up for Canada, our workers, and our industries." How might President Trump’s 2nd term affect shipping sector? Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking Just ahead of President Trump taking office for the second time, J. Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking firm Stifel, believed that the shipping industry was prepared for the new tariffs. However, he also stated to the Morning Star: "President Trump's Administration promises to usher in a new trade and tariff regime. As such, it's difficult to assess the ultimate impact to the freight transportation industry. Prima facie, we believe tariffs are a drag on freight demand, effectively resulting in higher costs for shippers that are generally passed on to end consumers over time." Attention to the American sanction announcements Mr. Chan went on to note that those involved in shipping containers across continents should be paying particular attention to the American sanction announcements. He commented: "Because almost all trans-Pacific trade moves over the ocean, we believe ocean container shipping will see the largest direct impact. But for shippers and retailers, there is no cheaper way to move goods than over the ocean, so there are few modal alternatives if production remains in Asia. We see the most risk for maritime shipping, with containers and dry bulk being more acute, with more insulation for oil and gas tankers." Shipping news and intelligence service Various sources have looked back on President Trump’s first term to get an idea of what could be expected As President Trump has just become his second term as US president and the American sanctions have only just been announced, it will take time to see what the true impact will be. However, various sources have looked back on President Trump’s first term to get an idea of what could be expected. For example, shipping news and intelligence service Lloyd’s List pointed out that tariffs introduced when President Trump was last in the White House had a noticeable effect on both spot container freight rates and import timing. Cargoes were pulled forward in the second half of 2018 by importers as they looked to beat tariff deadlines, which resulted in higher spot rates temporarily before affecting rates in 2019 because of inventory overhang. Could repeat results be seen across 2025 and 2026? Long-life inputs and goods from the tariff countries Jason Miller, a freight economist and professor of supply chain management at Michigan State University, certainly seemed to think so. Speaking to Lloyd’s List before President Trump’s 2024 presidential victory when the tariffs were only part of campaign proposals at that point, he said: “We will see front-loading like we have never seen before in 2025. There would be a massive pull-forward of demand as everybody rushes to bring in long-life inputs and goods from tariff countries, especially China.” Shipping demand and routes Shipping demand and routes could be affected due to trade uncertainty too Meanwhile, international shipping and forwarding agents Supreme Freight Services reported that increased tariffs may cause disruption to shipping volumes and global supply chains, if trade policies introduced by President Trump during his first term are anything to go by. Shipping demand and routes could be affected due to trade uncertainty too, though the publication also acknowledged that increased investment in ports and inland waterways across the US could improve efficiency for domestic and international trade alike. New American sanctions Cleveland Containers has looked to reassure its customers that any disruption caused by the new American sanctions will be minimised at the firm. Hayley Hedley, the company’s Commercial Director, stated: “Recent history certainly suggests that the new tariffs being introduced by President Trump will have various knock-on effects across the shipping industry." “Fortunately, Cleveland Containers has a continuous supply of shipping containers entering the UK. We work with several agents to ship from various locations, as well as having good stock on the ground, so are confident in our ability to provide for our customers.”
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Demand for ammonia is being transformed by the energy transition. Until recently used as an input for fertiliser and chemical products, new markets for green and blue ammonia are emerging, replacing fossil energy in power generation, steel production and marine fuel. Today some 200m tonnes per annum of ammonia is produced worldwide with 20m tpa transported in LPG carriers. The scale of the emerging and potential demand will see these figures rise; how quickly this can be achieved will determine its take-up as a shipping fuel. New or evolving technology The interest in ammonia stems both from its ‘zero emissions’ when used as fuel and because its production isn’t dependent on biogenic carbon sources. As the global economy transitions away from fossil-based fuels, biogenic carbon – from captured CO2, electrolysis and even waste sources – will be subject to increasing competition from other consumers. Shipyards around the world are considering the advantages that operating on ammonia may provide Accordingly, owners, operators, designers, and shipyards around the world are considering the advantages that operating on ammonia may provide. However, when considering any new or evolving technology, it is important to have a clear understanding of not only the benefits, but the challenges that may be involved. Challenges of ammonia bunkering Biogenic carbon will increasingly replace fossil-based carbon in many of the products in use today in industry and consumer goods. Competition from the energy and aviation sectors will inevitably lead to increased prices but production capacity will need to come from industrial sources rather than biomass harvested for this purpose. ABS has produced a Technical and Operational Advisory on Ammonia Bunkering in response to the need for better understanding by members of the maritime industry. It is intended to provide guidance on the technical and operational challenges of ammonia bunkering, both from the bunker vessel’s perspective (or land-side source) and from the receiving vessel’s perspective. Managing emissions Particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions The carbon emissions from the combustion of ammonia are associated with and dependent on the type and amount of pilot fuel used. The use of biofuel as pilot fuel may further reduce the emissions. In addition, the emissions of sulphur dioxide, heavy metals, hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs) drop to zero (or near zero, depending on the pilot fuel used); and particulate matters (PM) are also substantially reduced compared to conventional fossil fuels. However, particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions, due to the imperfect combustion of ammonia and the use of pilot fuels. These emissions will need to be kept as low as possible by further adjustment and development of the engine technology or using an on-board exhaust gas treatment technology. Currently, hydrogen for ammonia production is typically produced by means of steam methane reforming (SMR) or autothermal reforming (ATR) of natural gas (grey ammonia). If the CO2 emissions from the process of converting natural gas are captured and stored, the ammonia is typically referred to as ‘blue’. Production of blue ammonia Moreover, the production of blue ammonia retains a dependency on fossil fuels. Therefore, ‘green ammonia’, which is produced from hydrogen made from renewable energy sources (green hydrogen), is generally considered to be the end-solution for decarbonisation which leads to a sustainable fuel cycle, while blue ammonia is seen to have an intermediate role. The potential well-to-wake GHG emissions of green ammonia are estimated to be around 91% lower than for grey ammonia, and 85% lower than HFO and MGO. The grey ammonia production network is already well established and global, ensuring easier accessibility across major ports worldwide. Infrastructure and regulation Specific requirements for ammonia bunkering are under discussion by all marine stakeholders This will help green ammonia become readily available for bunkering and distribution once sufficient production and infrastructure are in place. On the other hand, when compared with liquid hydrogen or LNG which can be stored at temperatures of −253°C and −162°C, respectively, liquid ammonia can be stored and transported at −33°C near atmospheric pressure, which allows for easier adaptation of existing fuel infrastructure on ships and at ports. While specific requirements for ammonia bunkering are under discussion by all marine stakeholders, the requirements for shipping ammonia as cargo, including loading and unloading operations, have been established in the marine industry and are covered by the IMO International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) and incorporated in the ABS Rules for Building and Classing Marine Vessels Part 5C Chapter 8 “Vessels Intended to Carry Liquefied Gases in Bulk”. For the use of ammonia as bunker fuel, all segments of the marine industry (including IMO, Class Societies, Port Authorities, and industry agencies) are working to develop requirements and procedures specific to ammonia bunkering operations. Refer to the section “Regulatory Organisation” of this Advisory for the current activities of each marine industry segment. Bunkering Options Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels There are three main methods of bunkering ammonia to ships. Truck-to-ship is the process of transferring ammonia from trucks or truck trailers to a receiving vessel using ammonia as fuel. Typically, the tanks on the truck are pressurised and store ammonia at ambient temperature. To increase bunker capacity and transfer rates, a manifold may be used to connect several trucks simultaneously to supply the receiving vessel. Truck-to-ship transfer operations may provide greater operational flexibility, but at the same time could induce operational restrictions and limitations by the local Authority. Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels, such as container ships, tankers, and bulk carriers, which require large fuel capacities and greater quantities of fuel to be bunkered. Terminal-to-ship bunkering transfers ammonia from an ammonia storage terminal pipeline connected to receiving vessels via a hose assembly or loading arm. Ammonia Safety Ammonia is toxic and reacts violently and explosively with oxidising gases such as chlorine, bromine, acids, and other halogens. When ammonia is inhaled, swallowed or absorbed via skin contact, it reacts with water in the body, producing ammonium hydroxide. Due to these toxicity issues, ammonia is classified as a hazardous substance, with the level and time of exposure being controlled by several national standards. The level of competency needed for each task depends on the role and duties of the individual A combination of both training and operational experience is key to developing the required competencies for ammonia bunkering operations. The level of competency needed for each task depends on the role and responsibilities of the individual. Therefore, the training may vary from person to person. Seafarers on board ships using ammonia fuel should have completed training to attain the abilities that are appropriate to the capacity to be filled, and duties and responsibilities to be taken up. The master, officers, ratings and other personnel on ships using ammonia fuel should be trained and qualified in accordance with regulation V/3 of the STCW Convention and section A-V/3 of the STCW Code, taking into account the specific hazards of ammonia used as fuel. Ship-specific training Ship-specific training is to be reviewed and approved by governing regulatory authorities. The IGF Code provides detailed training requirements for ships that use gases or other low-flashpoint fuels. Ships under the jurisdiction of flag administrations signatory to SOLAS should ensure that seafarers should have the specified certificates of proficiency and the administration shall approve courses and issue endorsements indicating completion of the qualification. All crew must be provided with and be made aware of the emergency procedures and must be trained in any roles and responsibilities they may have. Training, drills and exercises to prepare crews for emergencies are to be provided. Lessons learned from past operations should be incorporated to improve emergency procedures. Procedures should cover all scenarios specific to the ship, type of incident, equipment, and associated areas.
Harbour insights
Ammonia is gaining traction as a future fuel in the maritime industry, primarily due to its potential to significantly reduce greenhouse gas emissions. A key driver for ammonia's interest is that it can be carbon-free when combusted, which aligns with the maritime industry's increasing pressure to meet emissions regulations. However, most ammonia production currently relies on fossil fuels. Transitioning to "green ammonia" production is crucial for sustainability. If "green ammonia" is produced using renewable energy sources, it offers a pathway to near-zero emissions shipping. Safety measures and regulations Ammonia’s volumetric energy density – higher than hydrogen – makes it more practical for onboard storage. However, ammonia is toxic, which requires stringent safety measures and regulations for handling and storage. The combustion of ammonia can produce nitrous oxide (N2O), a potent greenhouse gas. Therefore, mitigation technologies are needed. Building the necessary infrastructure for ammonia bunkering and supply will be a significant undertaking. Developing guidelines for safe use Ammonia is poised to play a significant role in the maritime industry's transition to a future The International Maritime Organization (IMO) is developing guidelines for the safe use of ammonia as a marine fuel. Increasing numbers of companies are investing in the development of ammonia-fueled vessels and technologies. European Union (EU) legislation, such as the EU Emissions Trading System (ETS) and the FuelEU initiative to support decarbonisation, are pushing the maritime industry towards the use of alternative fuels, which is increasing the potential of ammonia. While challenges remain, ammonia is poised to play a significant role in the maritime industry's transition to a more sustainable future. Ongoing research and development Ongoing research and development are focused on improving safety, reducing emissions, and scaling up production. In essence, ammonia offers a promising pathway for the maritime industry to reduce its carbon footprint, but its widespread adoption depends on overcoming technical and logistical challenges. Working toward the future of ammonia Progress is already happening as the maritime industry works toward a future that includes the use of ammonia as a fuel. For example, one project underway aims to be a pioneer in establishing a comprehensive and competitive supply chain to provide clean ammonia ship-to-ship bunkering in the U.S. West Coast. Progress is already occurring as the maritime industry works toward a future A feasibility study is being conducted at the Port of Oakland, Benicia, and nearby major ports on the U.S. West Coast. A Memorandum of Understanding (MOU) between American Bureau of Shipping, CALAMCO, Fleet Management Limited, Sumitomo Corp. and TOTE Services LLC is jointly conducting the feasibility study. "We are proud to share our industry-pioneering expertise in ammonia as a marine fuel to support this study on the U.S. West Coast,” said Panos Koutsourakis, Vice President of Global Sustainability at the American Bureau of Shipping. “Our expertise in developing safety guidelines will support the consortium to address the ammonia-specific set of safety and technology challenges.” More global ammonia developments In another development, three LPG/ammonia carrier ships have been ordered at the South Korean shipyard HD Hyundai Heavy Industries (HD HHI). Danish investment fund European Maritime Finance (EMF) and international shipping company Atlas Maritime have confirmed the order. HD HHI’s parent company, HD Korea Shipbuilding & Offshore Engineering (HD KSOE), revealed the order for $372 million in March 2024. The three 88,000 cubic-metre LPG dual-fuel carriers, capable of carrying and running on ammonia, are scheduled for delivery in December 2027. The vessels will be named EMF Viking I, II, and III. Also, Lloyd’s Register (LR) and Guangzhou Shipyard International have signed a joint development project to design the world’s largest very large ammonia carrier (VLAC). The design of the 100,000-cubic-metre vessel has been assessed in line with LR’s Structural Design Assessment and prescriptive analysis. The gas carrier will have an independent IMO Type B tank for safe carriage of the chemical. Zero-emissions operations The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe “As major economies look to co-fire ammonia in their coal power stations to reduce the CO2 footprint of their national energy mix, shipping will play a key role in distributing clean hydrogen-based commodities such as ammonia, thereby supporting nations to meet their Paris Agreement commitments," says LR's Chief Executive Nick Brown. Furthermore, a partnership of companies from Norway has ordered a pioneering short-sea cargo ship that will advance the industry’s ability to provide zero-emissions operations. The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe and will be the first to operate on ammonia and electricity. Amogy’s ammonia-to-electrical power system A start-up company focusing on ammonia-to-power technology, Amogy, demonstrated the first tugboat powered by its cracking technology just short of the fourth anniversary of the company’s launch. The trip of a 67-year-old tug along a tributary of New York State’s Hudson River is part of the company’s works to develop and commercialise its technology to decarbonise the most difficult industries. Amogy’s ammonia-to-electrical power system splits, or “cracks,” liquid ammonia into its base elements of hydrogen and nitrogen. The hydrogen is then funnelled into a fuel cell, generating the power for the vessel. Research points to the risks of ammonia The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel Today and in the future, ammonia, a main component of many fertilisers, can play a key role in a carbon-free fuel system as a convenient way to transport and store clean hydrogen. The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel. However, new research led by Princeton University scientists illustrates that even though it may not be a source of carbon pollution, ammonia's widespread use in the energy sector could pose a grave risk to the nitrogen cycle and climate without proper engineering precautions. Use of ammonia U.S. National Science Foundation (NSF)-supported research found that a mismanaged ammonia economy could ramp up emissions of nitrous oxide, a long-lived greenhouse gas around 300 times more potent than carbon dioxide and a major contributor to the thinning of the stratospheric ozone layer. The use of ammonia could lead to substantial emissions of nitrogen oxides, a class of pollutants that contribute to the formation of smog and acid rain. And it could directly leak fugitive ammonia emissions into the environment, forming air pollutants, impacting water quality and stressing ecosystems by disturbing the global nitrogen cycle. Negative impacts of an ammonia economy The researchers found that the potential negative impacts of an ammonia economy "We have great hope that ingenuity and engineering can help reduce our use of carbon-based energy sources," said Richard Yuretich, a program director in NSF's Division of Earth Sciences. "But caution is advised because of unintended environmental spillover effects that may result from new technology." The researchers found that the potential negative impacts of an ammonia economy may be minimised with proactive engineering practices, but the possibility of risks should not be taken lightly. Addressing an inconvenient reality As interest in hydrogen as a zero-carbon fuel has grown, so too has an inconvenient reality: It is notoriously difficult to store and transport over long distances, requiring storage at either temperatures below -253 degrees Celsius or at pressures as high as 700 times atmospheric pressure. Ammonia, on the other hand, is much easier to liquify, transport and store, and capable of being moved around similarly to tanks of propane. Nonetheless, the cycle of nitrogen is delicately balanced in Earth's critical zone, and extensive research must be undertaken to investigate the repercussions of ammonia combustion and to develop new methods to minimise the risks. Challenges of ammonia as a maritime fuel Here's a breakdown of the key challenges of using ammonia for maritime fuel: Toxicity and Safety: For human health, ammonia is highly toxic, posing a serious risk to human health through inhalation or skin contact. This necessitates stringent safety protocols, advanced leak detection systems, and thorough crew training. Relating to the environment, leaks can also harm aquatic ecosystems, requiring robust containment and mitigation measures. Combustion Challenges: Ammonia's combustion characteristics are less favourable than traditional fuels, requiring modifications to engine design and potentially the use of pilot fuels. Emissions: Combustion can produce nitrogen oxides (NOx) and nitrous oxide (N2O), both of which are harmful pollutants. Mitigating these emissions is crucial. "Ammonia slip" is also a concern, in which unburnt ammonia is released. Infrastructure and Supply Chain: Establishing a global network of ammonia bunkering infrastructure is a massive undertaking, requiring significant investment and coordination. Scaling up "green ammonia" production, using renewable energy, is essential for its sustainability. This requires a robust and reliable supply chain. Storage: Ammonia has specific storage requirements, and onboard storage systems must be designed for safety and efficiency. International Standards Needed: Consistent and comprehensive international regulations and standards are needed for the safe handling, transportation, and use of ammonia as a marine fuel. While the IMO is developing Guidelines, complete and ratified rules are still needed. Economic challenges: "Green ammonia" is currently more expensive than traditional fuels, although costs are expected to decrease as production scales up. Significant investments are needed in research, development, and infrastructure to make ammonia a viable maritime fuel. Also, dedicated ammonia-fueled engines are still under heavy development, and do not have widespread availability. The path to commercialisation Overcoming the variety of technical and other obstacles will require collaboration among governments, industry stakeholders, and research institutions. The timeline for ammonia deployment in maritime applications is actively unfolding, with key milestones happening now and soon. 2025 marks the first trials of two-stroke, ammonia dual-fuel engines on oceangoing ships. Engine manufacturers like MAN Energy Solutions and WinGD are progressing with their engine development, with initial deliveries soon. These pilot projects are crucial for gathering real-world data and building confidence in ammonia as a marine fuel. Development of comprehensive regulations As the maritime industry faces, ammonia is hoped to play a growing role in the fuel mix Gradual commercialisation will follow in the late-2020s as the technology matures and the infrastructure develops. The focus will be on refining engine technology, improving safety protocols, and establishing bunkering facilities in key ports. Wider adoption will likely follow in the 2030s, depending on factors such as the cost of green ammonia, the development of comprehensive regulations, and the expansion of the global supply chain. As the maritime industry faces increasing pressure to decarbonise, ammonia is expected to play a growing role in the fuel mix. Future of maritime It's likely that a combination of ammonia and other alternative fuels and technologies will be used in the future of maritime. Alternatives include methanol, liquid natural gas (LNG), hydrogen, biofuels, electric propulsion, and even nuclear power. Ammonia is a strong contender, bit it faces stiff competition from other promising technologies. The maritime industry's transition to a sustainable future will likely involve a diverse mix of fuel solutions.
Trusted by more than 3,000 ships worldwide, NAPA’s Safety Solution software has promoted ship safety and operational efficiency for 35 years, working closely with customers. NAPA's solutions aim to positively impact the maritime industry by simplifying and streamlining onboard and shoreside operations through digitalisation, reducing errors and workload for seafarers, enhancing safety, and enabling more sustainable decision-making. Paper-based system challenges “Historically, the maritime market has relied heavily on paperwork for various processes, including log-keeping, work permits, and regulatory reporting,” says Tommi Vihavainen, NAPA's Director of Development at Safety Solutions. “This reliance on paper-based systems led to numerous challenges, such as time-consuming administrative tasks, increased risk of errors, difficulty in data aggregation and sharing, and limited visibility for shoreside teams.” Software and data services NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers NAPA provides software and data services for ship design and operations to enable a safer, more sustainable, and future-proof maritime industry. NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers and is considered the global de facto standard in shipbuilding. NAPA's product line On the ship operations side, NAPA's product line includes NAPA Stability next-gen loading computer; NAPA Emergency Computer to provide clarity on ship vulnerability in critical moments; NAPA Permit to Work, which digitalises work permits and approval; and NAPA Fleet Intelligence, a cloud-based platform to enable shoreside teams to handle fleet safety, compliance, and optimisation. NAPA Logbook (along with the NAPA Status Board and Checklists) helps make electronic record-keeping, reporting, and compliance easy and error-free. Digitisation “Digitisation has transformed the management of information and data onboard vessels by automating tasks, standardising formats, and enabling real-time data sharing between ship and shore,” adds Vihavainen. “This has led to significant improvements in efficiency, safety, and compliance.” Efficiency, safety, and compliance Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations For example, electronic logbooks automate data entry, reduce errors, and facilitate easy regulatory compliance. Digital work permit systems streamline approval processes, enhance communication, and provide real-time visibility into ongoing work, improving safety and inter-department coordination. Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations and performance, identify trends, and make informed decisions for optimised operations. Proactive approach to safety at sea Digital ship stability systems, like NAPA Stability, can enable a proactive approach to safety at sea by providing real-time monitoring and analysis of a ship's stability parameters – for both intact and damaged stability. They integrate with a 3D model of the ship, known as a digital twin, which is based on data and models used during the ship design process. “These systems continuously monitor stability data, such as the vessel's metacentric height, and provide alerts if any IMO-set stability and loading criteria are unmet,” says Vihavainen. Real-time awareness “This real-time awareness allows for early detection of potential risks and facilitates timely corrective actions to maintain stability and ship safety in all conditions." Additionally, these systems can simulate different scenarios and provide decision support to the crew and shoreside teams in case of emergencies, such as grounding or damage to the hull, allowing for a more informed and proactive response. Cloud-based monitoring unlocks By analysing this data, shoreside teams can identify trends, benchmark performance, and make decisions Cloud-based performance monitoring solutions can unlock new operational efficiencies in the maritime market by providing insights in real-time, as well as collecting historical data for later analysis. NAPA’s onboard solutions, for example, can collect data from various sources, like all logbook data, such as a deck, navigational data, stability data, engine management systems, HVAC, tank data, waste, and water management, as well as other relevant onboard sensors. By analysing this data, shoreside teams can identify trends, benchmark performance, and make data-driven decisions to optimise various aspects of operations, including fuel efficiency, waste and water management, engine performance, and so on. Operational efficiency “The cloud-based nature of these systems enables seamless data sharing and collaboration between shipboard and shoreside teams, facilitating real-time monitoring, communication, and support,” says Vihavainen. “This accessibility to data and insights allows for more informed decision-making, proactive rectifications in operational practices, maintenance, and continuous improvement in operational efficiency.” Supporting shipping’s transition to decarbonisation The global maritime industry, and seafarers in particular, are grappling with new ways of working to support shipping’s decarbonisation transition. A recent survey by the International Seafarers Welfare and Assistance Network (ISWAN) revealed that 54% of seafarers reported an increase in their workloads, 44% said they are feeling higher levels of stress, and 33% fear potential criminalisation due to complex reporting requirements. NAPA Logbook By enabling data to be exchanged between systems, teams can enhance situational awareness Digital, integrated solutions like NAPA Logbook, through NAPA Fleet Intelligence, allow teams to tackle these issues by doubling down on automation, thereby minimising errors saving time, and offering a holistic approach to data management, operational safety, and efficiency. By enabling data to be exchanged between systems, teams can enhance situational awareness and make better-informed decisions on critical operational matters and regulatory compliance, with greater speed and accuracy, as the platform also gives a centralised data overview. Benefits Vihavainen says centralised data collection through platforms also benefits operations by: Providing a holistic view of fleet operations: 24x7 monitoring and real-time situational awareness at a granular level - per ship, per voyage, per leg. This comprehensive overview allows for better decision-making regarding safety, efficiency, and compliance. Facilitating data-driven insights: By analysing the collected data, operators can identify trends, benchmark performance, and implement strategies for continuous improvement. Enabling better support from the shoreside without the need for additional communications. Optimised Voyage Planning: By combining real-time weather data with historical performance data, operators can plan more efficient and safer routes, especially for cruise customers during the hurricane season, for instance. Predictive Maintenance: Analysing data from various onboard systems can help predict potential equipment failures, allowing for proactive maintenance and reducing downtime. Improving record keeping and promoting safety NAPA Logbook is an electronic logbook solution that aims to improve record keeping, simply shipboard admin work, and promote safety onboard vessels. It is approved by over 20 major flag states and DNV and ClassNK, and it is trusted by over 12,000 users globally. NAPA Logbook improves record-keeping and compliance by: Automating data entry, reducing seafarer workload: The system automatically fills in data for log entries, reducing the administrative burden on the crew. Standardising formats, reducing chances of mistakes: NAPA Logbook ensures that all log entries adhere to the required formats, minimising errors, and inconsistencies. Simplifying reporting: The system facilitates the easy generation of reports for various regulatory requirements, such as EU-MRV, MARPOL, ESG, and CII. Logbook integration For instance, with the new voyage reporting functionality, the NAPA Logbook reduces the administrative burden of regulatory compliance and covers the monitoring systems EU-MRV (Monitoring, Reporting and Verification), and the IMO-DCS (Data Collection System). The digital platform enables the integration of logbooks with regulatory reporting; data is automatically shared with shoreside teams, via NAPA Fleet Intelligence, as well as with the verifier, in this case, DNV Emission Connect, in near real-time. End-to-end compliance The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV, as well as other relevant stakeholders in the supply and emissions chain, in a format that meets all requirements. This provides end-to-end compliance support, removes duplication of work, and offers invaluable time savings for the crew which would otherwise not be possible. 14% reduction Here is a case example: Anthony Veder, a gas shipping company that implemented the NAPA Logbook in 2023 reports that it has already cut 2000 administrative hours per vessel – a 14% reduction. This time savings is not only from automated entry but also from automated reporting. With the initial success of NAPA Logbook across Anthony Veder’s fleet, the company is ramping up digitalisation to ease seafarer workload, boost morale, and reduce the margin for error. Digital tools can help reduce the administrative workload onboard and contribute to the accuracy of reporting, which is becoming increasingly important with regulations like the EU ETS and FuelEU Maritime. Replacing paper-based work permitting NAPA Permit to Work is a digital system that replaces the traditional paper-based work permit process for hazardous tasks onboard. NAPA Permit to Work has been developed through close collaboration with customers, such as Carnival Cruise Line and Virgin Voyages, to ensure it meets their specific needs and safety management system guidelines. The system allows for customisation according to each operator's unique processes. Miscommunication to mishaps Hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays Traditionally, hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays, oversight, and miscommunication – leading to mishaps. According to data from InterManager, 55% of accidents in the past 28 years have happened during planned work, with many incidents concentrated in high-risk areas like oil tanks and holds. Permit-to-work process Digitising the permit-to-work process can dramatically reduce the chances of human error, potentially preventing accidents before they occur. Apart from increasing efficiency, these digital permits also help ensure every step of the process is completed correctly and provide real-time visibility of high-risk tasks for both crews onboard and shoreside teams. This is especially important for newer seafarers, many of whom have joined the industry after the pandemic. They offer critical support for those still gaining experience, reducing the risk of accidents. Additionally, digitalising the process results in: Streamlined work process: The digital system eliminates the need for physical forms and signatures, saving time and reducing administrative burden. Comprehensive digital safeguards: The system acts as a checklist, ensuring that all necessary safety checks are completed before the start of any job. Enhanced communication and coordination: The system automatically notifies relevant departments and personnel with real-time status updates of ongoing work, improving coordination and transparency. Real-time monitoring and visibility: Both shipboard and shoreside teams have real-time visibility into ongoing work, enabling proactive safety management and faster response in case of issues. Benefits for shoreside teams NAPA Permit to Work provides shoreside teams with better fleet-wide visibility of ongoing work and conditions, enabling a proactive approach to safety and maintenance. This real-time data transparency allows for more efficient resource allocation, improved coordination of maintenance activities, and faster response to potential issues, ultimately leading to enhanced operational efficiency and reduced downtime. Comprehensive digital checklist NAPA Permit to Work will act as a comprehensive digital checklist The influx of new seafarers with limited experience post-pandemic presents challenges for the maritime industry. These challenges include increased workloads, higher stress levels, and potential safety risks due to unfamiliarity with complex tasks and procedures. Here, the NAPA Permit to Work will act as a comprehensive digital checklist to help seafarers ensure that no safety-critical steps are missed. Virtual guide and augments The system is designed so that no digital form is accepted unless all required safety checks are completed before the start of any job, significantly reducing the risk of oversight. Post-COVID, a large proportion of crew working aboard cruise ships are on their first contract with little at-sea experience. This functionality provides a virtual guide and augments previous training, eases handovers, and minimises the margin for error. Safety and efficiency As the maritime industry shifts toward a future marked by multi-fuel technologies and stringent environmental regulations, the operational demands placed on crews will only increase. But within this growing complexity lies an opportunity to rethink approaches to safety and efficiency. “Rather than overwhelming seafarers with more screens and systems, we need to harness digital tools and data in ways that simplify—not complicate—their work environments,” says Vihavainen. Expanding capabilities of digital tools When harnessed properly, it can lead to much bigger and newer areas of operational efficiency It is a misconception that solutions like NAPA Logbook and NAPA Stability only help with ship safety, data recording, and compliance. With cloud technology, the power of these digital tools extends far beyond their traditional roles, unlocking vast amounts of previously untapped data—up to 90% of ship data typically remains onboard, unutilised. This data spans everything from engine performance, and HVAC to waste, water, and tank management. When harnessed properly, it can lead to much bigger and newer areas of operational efficiency than achievable today. Real-time data sharing “By automating the collection and analysis of this data in real-time, and sharing it with shoreside teams, we also enable better ship-and-shore collaboration,” says Vihavainen. “As the complexity of modern maritime operations grows, cloud connectivity has become a critical tool in bridging the gap between onboard crews and shoreside teams.” Proactive voyage monitoring By allowing real-time communication and data sharing, shoreside teams can provide invaluable support in areas ranging from stability management and emergency response to proactive voyage monitoring and machinery issue resolution. “This level of collaboration is reshaping how we approach safety and efficiency at sea,” says Vihavainen. “These advances are more than just technological upgrades—they are transforming the relationship between seafarers and their shoreside colleagues.”
The maritime industry is taking important steps to improve cybersecurity, catching up rapidly by introducing other industries' best practices into information technology (IT) and operational technology (OT) onboard vessels. Work remains to be done to ensure a cyber-resilient worldwide fleet of maritime operations. The way forward is through collaboration among all major stakeholders. Remote-controlled and autonomous ships In the future, the marine industry will increasingly use remote-controlled and autonomous ships and infrastructure. One can imagine multi-ship, multi-infrastructure hybrid scenarios where a software failure or a cyber-attack could result in widespread damage. “Protecting this advanced marine industry will drive the need for even higher levels of cybersecurity, reliability, and robustness of marine automation systems and software,” says Svante Einarsson, Head of Maritime Cyber Security Advisory, DNV Cyber. Cybersecurity insights CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels Einarsson shares additional insights into cybersecurity for the maritime industry in our recent interview. DNV expanded its cybersecurity capabilities by acquiring Applied Risk in 2021 and Nixu in 2023, forming DNV Cyber with over 500 experts. This merger enhances maritime cybersecurity by integrating IT and industrial control system security services, offering comprehensive solutions from risk assessment to incident response. CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels, ensuring real-time threat monitoring and support to sustain regulatory compliance. Maritimeinformed.com: What are the cybersecurity vulnerabilities in the maritime market? What are the possible consequences and/or worst-case scenarios? Einarsson: The maritime industry faces several cybersecurity vulnerabilities, including the integration of IT and OT systems, unsecured Internet of Things (IoT) devices, outdated software, weak authentication, and human factors like phishing. The consequences of breaches can be severe, such as operational disruption, data theft, ransomware attacks, cyber-physical attacks, and supply chain disruption. A worst-case scenario includes hybrid incidents that compromise both IT and OT systems at the same time within highly trafficked areas (such as a port). Depending on the available time and alternative means, the vessel might run aground resulting in major oil spills, environmental disasters, and/or significant loss of life. These vulnerabilities and potential impacts highlight the critical need for robust cybersecurity measures in the maritime sector. Maritimeinformed.com: What is the role of regulations when it comes to cybersecurity in the maritime market, including IMO, IACS, and critical infrastructure regulations? How do regulations drive better cybersecurity practices? The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting Einarsson: Regulations play a crucial role in maritime cybersecurity by setting global standards and ensuring compliance. The International Maritime Organisation (IMO) mandates cyber risk management in Safety Management Systems, while the International Association of Classification Societies (IACS) requires cybersecurity integration in systems and ships throughout the lifecycle of a vessel for new builds contracted after July 1, 2024. The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting. These regulations drive better practices by standardising frameworks, holding organisations accountable, promoting holistic risk management, enhancing transparency, and fostering continuous improvement. This comprehensive regulatory approach forces all stakeholders in the industry (yards, vendors, and ship managers) to act and work together to implement effective cyber resilience. Maritimeinformed.com: How does greater awareness boost cybersecurity? What is the role of near misses in driving cyber awareness and investments? Einarsson: Greater awareness boosts cybersecurity by educating individuals and organisations about potential threats, leading to better prevention and response strategies. It fosters a culture of vigilance, reducing the likelihood of successful attacks. Near misses play a crucial role by highlighting vulnerabilities and demonstrating the potential impact of cyber threats without causing actual harm. These incidents drive investments in cybersecurity by showcasing the need for robust defences, and well-planned responses, and encouraging proactive measures to prevent future breaches. Maritimeinformed.com: What are the pitfalls of over-confidence and under-preparation when it comes to cybersecurity? Einarsson: Overconfidence in cybersecurity can lead to complacency, ignoring potential threats, and underestimating attackers. For example, relying on boundary protection only, and believing that a system is impenetrable might result in neglecting regular updates and patches, leaving it vulnerable to exploits. Under-preparation, on the other hand, means inadequate de fences, response plans, and drills. An example is the 2017 Equifax breach, where failure to patch a known vulnerability led to the exposure of sensitive data of 147 million people. Both pitfalls can result in significant financial and reputational damage. Maritimeinformed.com: What is the role of technology advancements in driving the need and awareness of cybersecurity (e.g., the impact of digitisation, decarbonisation, automation, etc.)? Digitisation and automation support decarbonisation also increase the need for cybersecurity Einarsson: Decarbonisation is one of the key shaping factors in maritime today. Technology advancements like digitisation and automation support decarbonisation but also increase the need for cybersecurity by expanding the attack surface and introducing new vulnerabilities. As industries adopt remote maintenance, IoT, artificial intelligence (AI), and other technologies, the complexity and connectivity of systems grow, making them more susceptible to cyber threats. An example is how scrubber systems with modern technologies such as remote connectivity are retrofitted onboard older vessels today, creating a new and potentially unmanaged gateway to the control systems onboard the vessel. In other words, cybersecurity enables digitisation and decarbonisation. Maritimeinformed.com: What is the labor situation when it comes to the skillsets needed for cybersecurity excellence? Is there a shortage of expertise and how can it be addressed? Einarsson: The cybersecurity industry faces a significant skills shortage, with a very large number of positions unfilled globally. This gap is driven by the rapid evolution of cyber threats and the increasing complexity of digital environments. To address this, organisations should adopt skills-based hiring, offer continuous training and upskilling, and create clear career paths. Attracting diverse talent and collaborating with educational institutions can also help bridge the gap. Emphasising both technical and soft skills is crucial for developing a robust cybersecurity workforce. Many times the best option is to combine different competencies of several people into an aligned team, such as superintendents with OT system and operation expertise with cybersecurity and IT fleet experts. Maritimeinformed.com: What is the emerging role of AI in cybersecurity, such as the ability to anticipate attacks before they happen? AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities Einarsson: AI can significantly enhance cybersecurity teams' effectiveness by providing advanced threat detection and predictive analytics. Machine learning algorithms analyse vast amounts of data to identify patterns and anomalies that may indicate potential cyber threats. AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities proactively. Additionally, AI automates routine tasks, freeing up human experts to focus on more complex issues. Human teams can assess AI-generated results, ensuring accuracy and context, and make informed decisions. Real-time threat intelligence and automated response systems ensure quicker mitigation of incidents, ultimately strengthening the overall security posture and reducing the likelihood of successful cyber-attacks. Maritimeinformed.com: What is the impact of geopolitics on cybersecurity? How does the geo-political situation contribute to risks? Einarsson: Geopolitics significantly impacts cybersecurity by increasing the frequency and severity of cyber-attacks. Conflicts like the Russia-Ukraine war have led to coordinated cyber and hybrid offensives, targeting critical infrastructure globally. Geopolitical tensions contribute to risks by creating an environment where state and non-state actors exploit vulnerabilities and accessible assets for espionage, sabotage, and disinformation. The most obvious related threat in the maritime domain is GPS and AIS spoofing which is very common in military active areas. Incidents have already happened where the untrained crew has had their ship impounded after being misled into foreign state waters.
Case studies
Rodman Polyships S.A.U., a Rodman Group shipyard specialised in the building of all types of GRP (Glass Fibre Reinforced Polyester) boats, has delivered a new professional boat to the Maritime Service of the Spanish Civil Guard. She is the new Rodman 66, a monohull, cabin type construction, with an aluminium hull and deck and a superstructure in glass fibre reinforced polyester (GRP) using hybrid multi-axial materials of aramid and E-glass and other synthetic and mineral fibres. New Rodman 66 all-weather patrol boat The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions, anti-illegal immigration tasks, and protection of the marine environment, surveillance and anti-drug trafficking activities, as well as other specific duties of the Spanish Civil Guard. Main features of the new Rodman 66 patrol boat: With an overall length of 22 metres and a top speed of almost 44 knots, she has been created by the shipyard’s design, technical and engineering teams, perfectly combining high performance, reliability, building quality and seaworthiness. The propulsion consists of two MAN engines of 1,400 HP each and two Hamilton Waterjets. The boat can accommodate a maximum of 5 crew members, with two cabins. The accommodation is complete with galley, dining room, living area and complete toilet. Providing a range of more than 800 nautical miles, the new Rodman 66 offers great versatility in surveillance and intervention operations. Completing the equipment of the Rodman 66 patrol boat, we highlight a 4.5 m. TarpónPro tender and a deck crane for boat services. New model developed to meet specific needs This new model has been developed to meet the specific needs of the owner, in addition to the various technical and construction quality requirements of Rodman’s standard, optimising the safety and comfort of the crew and people on board. The construction of this new patrol boat model consolidates Rodman’s position as one of the world leaders in the construction of professional crafts. Boats and vessels built by Rodman recognised globally All the professional and leisure boats and vessels built by the shipyard are widely recognised and highly valued by the most demanding owners, as well as by organisations and governmental administrations all over the world.
Cochin Shipyard Limited (CSL), the premier shipbuilding and ship repair company in India, has delivered the 10th Electric Hybrid 100 Pax Water Metro Ferry BY 125 to Kochi Water Metro. The occasion was marked by the Delivery Protocol Signing ceremony held at CSL, in the presence of Directors of KMRL and CSL, along with senior officials from KMRL, CSL, DNV, and IRS. Shri. Harikrishnan S, Chief General Manager - CSL, and Shri. Shaji P Jananardhanan, Chief General Manager - KMRL, signed the protocol document on behalf of their respective organisations. Both organisations worked closely towards the successful completion of this project, which contributes significantly to the sustainable development and modernisation of water transportation in Kochi, India. Electric Hybrid 100 Pax Water Metro Ferry BY 125 The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel designed to provide efficient, eco-friendly, and convenient transportation options for the residents and visitors of Kochi. With a focus on sustainability and environmental responsibility, this ferry is equipped with electric hybrid technology, ensuring reduced emissions and minimised environmental impact. CSL and KMRL partner to advance India’s maritime capabilities By achieving the milestone of delivering the 10th Water Metro Ferry, CSL and KMRL have demonstrated their commitment to advancing the Nation's maritime capabilities, while prioritising eco-conscious transportation solutions. The collaboration between the two esteemed organisations is a testament to the potential for excellence within the Indian shipbuilding industry. CSL and KMRL officials conveyed their gratitude to all stakeholders, including DNV and IRS, for their support and partnership on the project.
Universal and equitable access to drinking water and adequate sanitation and hygiene services, as well as the improvement of water quality at a global level, are part of the Sustainable Development Goals of the 2030 Agenda for Sustainable Development, but they have also become part of a daily problem in many parts of the planet. Ingeteam, with its Indar submersible pumps and motors designed and manufactured in Beasain, Spain, contributes to solve part of this problem; and among the numerous applications for which the submersible pumps and motors are intended are desalination plants. Indar submersible pumps and motors installed In this context, the six pumps and their corresponding submersible motors have been installed in the desalination plants of Alicante I and San Pedro del Pinatar I, both belonging to the Commonwealth of the Taibilla Canals, and their main task will be to take the water to be desalinated from the sea and discharge it as drinking water to the primary water network of the region, which in the summer period has more than 3 million inhabitants. The desalination plants and their operation The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain. It has a maximum production of 57,500 m³ of water per day and the treated water is fed into the New Alicante Canal (enlarged in 2006). In this installation, 2 Indar pumps manufactured by Ingeteam have been implemented with their respective motors. These water collection units will work in coastal vertical wells which usually have a high variability of water level. Seawater desalination plant using Ingeteam technology The second seawater desalination plant using Ingeteam technology is called San Pedro de Pinatar 1. It is designed to produce and supply the Commonwealth with a daily volume of up to 65,000 m³ of drinking water. The plant is located in the El Mojón area, near the Salinas and Arenales de San Pedro del Pinatar, in the Region of Murcia, Spain. The new units supplied will replace the 4 identical units supplied by the company in 2003. Stainless steel units supplied The 6 units for these desalination plants have been supplied to Ingeteam’s distributor, Juan Azcue, S.A., and are made of stainless steel, which is highly resistant to corrosion in aggressive environments, such as salinity, humidity, and acid or alkaline media. Both plants take the water from the vicinity and then proceed to its treatment. Thus, the process includes a seawater pretreatment that guarantees its optimal conditions (physical and chemical); desalination as such, which is carried out by means of membrane racks; and finally, a seawater post-treatment that guarantees compliance with the criteria established for water for human consumption by the regulations in force.
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
GEM elettronica is proud to announce the conclusion of a strategic project to strengthen Lithuania’s defense capabilities, during which cutting-edge surveillance radars with airspace monitoring function were installed on four patrol ships of the Lithuanian Navy. The contract was executed successfully and within the agreed-upon timelines, thanks to the collaboration between the Italian defence companies Leonardo and GEM elettronica. Advanced radar system The heart of the system is the Columbus MK2 3D multi-mission radar developed and produced in house by GEM Elettronica, specially designed for coastal surveillance and naval applications, made with the latest technologies, which guarantee high detection performances for search and tracking of small and fast targets at both air and sea surface space, high reliability and availability with low maintenance and life cycle costs. It is a compact and lightweight advanced radar system for short- and medium-range detection performing all the functions of surveillance, self-defence, IFF capabilities and weapon designation. The new radar systems were installed on the Lithuanian Flyvefisken (Standard Flex 300) class offshore patrol vessels (OPVs) Žemaitis (P11), Dzūkas (P12), Aukštaitis (P14) and Sėlis (P15). Working effectively together The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages (e.g., straits, port channels) and in the open sea, as well as in search and rescue missions. The systems will allow objects to be detected up to 100 kilometers away. The Commander of the Lithuanian Naval Forces Sea, Captain Giedrius Premeneckas underlined: “The successful implementation of this project represents a significant step in strengthening the capabilities of the Navy’s patrol vessels and significantly increasing our ability to carry out assigned tasks and work effectively together with NATO allies.” The President of GEM elettronica Ing. Antonio Bontempi answered “We are delighted to have successfully contributed to the realization of this strategic project. We are also proud of what achieved by our R&D and Production teams who worked together with passion and tenacity to ensure the project was achieved within the expected timescales.”
From its foundation in 1959, Mitsubishi Ore Transport (MOT) has been committed to upholding the highest standards in maritime safety and security, and to delivering premium-quality marine transport services using advanced ship management technologies. Inmarsat’s Fleet Xpress As part of NYK, the future-oriented organisation operates a fleet of 17 vessels and seeks to harness the vast potential of an increasingly connected maritime ecosystem to realise its digitalisation and decarbonisation objectives. It was in line with these goals, and to accelerate the adoption of digital services on board its vessels, that MOT adopted Inmarsat’s Fleet Xpress across its fleet. Simple, convenient, and fast communication MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy Combining the high speeds of Inmarsat’s Global Xpress Ka-band network with unlimited backup from its FleetBroadband L-band service, Fleet Xpress provides the continuous connectivity MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy. Captain Gregario C. Ogatis, Master of the MOT-managed bulk carrier Santa Isabel, described Inmarsat’s connectivity solution as “very simple, convenient and fast”, adding that it allows onboard personnel to “communicate easily with shore”. Quick information exchange Building on Ogatis’s remarks, Tesuro Ideguci, Chief Engineer, MOT, commented, “Inmarsat’s Fleet Xpress has allowed us to communicate with external parties and receive information very quickly, which is extremely beneficial." "Thanks to Fleet Xpress, I believe the way we work on land and sea will change significantly in the future, and we will see improvements in all aspects of information exchange.” Synthetic virtual networks Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its route As well as supporting fast and seamless business communications, Fleet Xpress helps crew members make the most of their free time by allowing them to keep in touch with family and friends and enjoy online entertainment on their own devices without interfering with mission-critical connectivity. Using synthetic virtual networks, Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its own dedicated route to the user. The bandwidth used outside of these essential services also receives its own pipeline, ensuring connectivity for both business and leisure, and achieves the highest standards in speed, reliability, and security. Enhanced efficiency, reduced fuel consumption Santa Isabel also benefits from Inmarsat’s Fleet Data, a maritime Internet-of-Things (IoT) platform that provides full data ownership and access from a single customisable dashboard. Fleet Data transforms the way ship owners and managers collect, transfer, analyse, store, and share vessel data for quick performance-based and historical benchmarking across the fleet. These insights support enhanced decision-making for more efficient and sustainable operations. Fleet Data is available on the Fleet Edge platform – a versatile, fully integrated modular solution giving Santa Isabel a path to operational efficiency, decarbonisation, and enhanced crew welfare over the Fleet Xpress network. Improving operational efficiency IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule Shunsuke Miyazaki, General Manager, of Mitsubishi Corporation (MC) Shipping, which owns Santa Isabel among other MOT-chartered or managed ships, commented, “In the trend towards global decarbonisation, the key is how to operate vessels more efficiently to reduce fuel consumption. We use Fleet Data to send information from the ship in real-time, and we leverage these insights to improve operational efficiency.” For the two MC-owned vessels already deploying Fleet Data, Miyazaki added, the IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule. Connectivity with certainty As the maritime industry becomes increasingly digitalised, more and more shipping companies are embracing new technologies and upgrading their satellite communications services to enable digitalisation, decarbonisation, and crew connectivity. This is why so many shipping companies rely on the Fleet Xpress suite of services, all delivered through our world-pioneering satellite network. Digital service adoption Inmarsat’s services are built to deliver control over the entire connectivity ecosystem" “We are delighted to support Mitsubishi Ore Transport solutions in driving the adoption of digital services on board,” said Gert-Jan Panken, Vice President of Sales, Inmarsat. “Inmarsat’s services are built to deliver control over the entire connectivity ecosystem." Build-in competitive advantages "With Fleet Xpress, shipping companies like MOT gain access to a host of opportunities to optimise and drive efficiency, the ability to attract and retain the most talented crew, and the capacity to future-proof operations and build-in competitive advantages." "By providing a clear view of what satellite communications mean to your business today and tomorrow, Inmarsat offers connectivity with certainty.”
Rodman Polyships S.A.U., a Rodman Group shipyard specialised in the building of all types of GRP (Glass Fibre Reinforced Polyester) boats, has delivered a new professional boat to the Maritime Service of the Spanish Civil Guard. She is the new Rodman 66, a monohull, cabin type construction, with an aluminium hull and deck and a superstructure in glass fibre reinforced polyester (GRP) using hybrid multi-axial materials of aramid and E-glass and other synthetic and mineral fibres. New Rodman 66 all-weather patrol boat The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions, anti-illegal immigration tasks, and protection of the marine environment, surveillance and anti-drug trafficking activities, as well as other specific duties of the Spanish Civil Guard. Main features of the new Rodman 66 patrol boat: With an overall length of 22 metres and a top speed of almost 44 knots, she has been created by the shipyard’s design, technical and engineering teams, perfectly combining high performance, reliability, building quality and seaworthiness. The propulsion consists of two MAN engines of 1,400 HP each and two Hamilton Waterjets. The boat can accommodate a maximum of 5 crew members, with two cabins. The accommodation is complete with galley, dining room, living area and complete toilet. Providing a range of more than 800 nautical miles, the new Rodman 66 offers great versatility in surveillance and intervention operations. Completing the equipment of the Rodman 66 patrol boat, we highlight a 4.5 m. TarpónPro tender and a deck crane for boat services. New model developed to meet specific needs This new model has been developed to meet the specific needs of the owner, in addition to the various technical and construction quality requirements of Rodman’s standard, optimising the safety and comfort of the crew and people on board. The construction of this new patrol boat model consolidates Rodman’s position as one of the world leaders in the construction of professional crafts. Boats and vessels built by Rodman recognised globally All the professional and leisure boats and vessels built by the shipyard are widely recognised and highly valued by the most demanding owners, as well as by organisations and governmental administrations all over the world.
Cochin Shipyard Limited (CSL), the premier shipbuilding and ship repair company in India, has delivered the 10th Electric Hybrid 100 Pax Water Metro Ferry BY 125 to Kochi Water Metro. The occasion was marked by the Delivery Protocol Signing ceremony held at CSL, in the presence of Directors of KMRL and CSL, along with senior officials from KMRL, CSL, DNV, and IRS. Shri. Harikrishnan S, Chief General Manager - CSL, and Shri. Shaji P Jananardhanan, Chief General Manager - KMRL, signed the protocol document on behalf of their respective organisations. Both organisations worked closely towards the successful completion of this project, which contributes significantly to the sustainable development and modernisation of water transportation in Kochi, India. Electric Hybrid 100 Pax Water Metro Ferry BY 125 The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel designed to provide efficient, eco-friendly, and convenient transportation options for the residents and visitors of Kochi. With a focus on sustainability and environmental responsibility, this ferry is equipped with electric hybrid technology, ensuring reduced emissions and minimised environmental impact. CSL and KMRL partner to advance India’s maritime capabilities By achieving the milestone of delivering the 10th Water Metro Ferry, CSL and KMRL have demonstrated their commitment to advancing the Nation's maritime capabilities, while prioritising eco-conscious transportation solutions. The collaboration between the two esteemed organisations is a testament to the potential for excellence within the Indian shipbuilding industry. CSL and KMRL officials conveyed their gratitude to all stakeholders, including DNV and IRS, for their support and partnership on the project.
Universal and equitable access to drinking water and adequate sanitation and hygiene services, as well as the improvement of water quality at a global level, are part of the Sustainable Development Goals of the 2030 Agenda for Sustainable Development, but they have also become part of a daily problem in many parts of the planet. Ingeteam, with its Indar submersible pumps and motors designed and manufactured in Beasain, Spain, contributes to solve part of this problem; and among the numerous applications for which the submersible pumps and motors are intended are desalination plants. Indar submersible pumps and motors installed In this context, the six pumps and their corresponding submersible motors have been installed in the desalination plants of Alicante I and San Pedro del Pinatar I, both belonging to the Commonwealth of the Taibilla Canals, and their main task will be to take the water to be desalinated from the sea and discharge it as drinking water to the primary water network of the region, which in the summer period has more than 3 million inhabitants. The desalination plants and their operation The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain. It has a maximum production of 57,500 m³ of water per day and the treated water is fed into the New Alicante Canal (enlarged in 2006). In this installation, 2 Indar pumps manufactured by Ingeteam have been implemented with their respective motors. These water collection units will work in coastal vertical wells which usually have a high variability of water level. Seawater desalination plant using Ingeteam technology The second seawater desalination plant using Ingeteam technology is called San Pedro de Pinatar 1. It is designed to produce and supply the Commonwealth with a daily volume of up to 65,000 m³ of drinking water. The plant is located in the El Mojón area, near the Salinas and Arenales de San Pedro del Pinatar, in the Region of Murcia, Spain. The new units supplied will replace the 4 identical units supplied by the company in 2003. Stainless steel units supplied The 6 units for these desalination plants have been supplied to Ingeteam’s distributor, Juan Azcue, S.A., and are made of stainless steel, which is highly resistant to corrosion in aggressive environments, such as salinity, humidity, and acid or alkaline media. Both plants take the water from the vicinity and then proceed to its treatment. Thus, the process includes a seawater pretreatment that guarantees its optimal conditions (physical and chemical); desalination as such, which is carried out by means of membrane racks; and finally, a seawater post-treatment that guarantees compliance with the criteria established for water for human consumption by the regulations in force.
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
GEM elettronica is proud to announce the conclusion of a strategic project to strengthen Lithuania’s defense capabilities, during which cutting-edge surveillance radars with airspace monitoring function were installed on four patrol ships of the Lithuanian Navy. The contract was executed successfully and within the agreed-upon timelines, thanks to the collaboration between the Italian defence companies Leonardo and GEM elettronica. Advanced radar system The heart of the system is the Columbus MK2 3D multi-mission radar developed and produced in house by GEM Elettronica, specially designed for coastal surveillance and naval applications, made with the latest technologies, which guarantee high detection performances for search and tracking of small and fast targets at both air and sea surface space, high reliability and availability with low maintenance and life cycle costs. It is a compact and lightweight advanced radar system for short- and medium-range detection performing all the functions of surveillance, self-defence, IFF capabilities and weapon designation. The new radar systems were installed on the Lithuanian Flyvefisken (Standard Flex 300) class offshore patrol vessels (OPVs) Žemaitis (P11), Dzūkas (P12), Aukštaitis (P14) and Sėlis (P15). Working effectively together The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages (e.g., straits, port channels) and in the open sea, as well as in search and rescue missions. The systems will allow objects to be detected up to 100 kilometers away. The Commander of the Lithuanian Naval Forces Sea, Captain Giedrius Premeneckas underlined: “The successful implementation of this project represents a significant step in strengthening the capabilities of the Navy’s patrol vessels and significantly increasing our ability to carry out assigned tasks and work effectively together with NATO allies.” The President of GEM elettronica Ing. Antonio Bontempi answered “We are delighted to have successfully contributed to the realization of this strategic project. We are also proud of what achieved by our R&D and Production teams who worked together with passion and tenacity to ensure the project was achieved within the expected timescales.”
From its foundation in 1959, Mitsubishi Ore Transport (MOT) has been committed to upholding the highest standards in maritime safety and security, and to delivering premium-quality marine transport services using advanced ship management technologies. Inmarsat’s Fleet Xpress As part of NYK, the future-oriented organisation operates a fleet of 17 vessels and seeks to harness the vast potential of an increasingly connected maritime ecosystem to realise its digitalisation and decarbonisation objectives. It was in line with these goals, and to accelerate the adoption of digital services on board its vessels, that MOT adopted Inmarsat’s Fleet Xpress across its fleet. Simple, convenient, and fast communication MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy Combining the high speeds of Inmarsat’s Global Xpress Ka-band network with unlimited backup from its FleetBroadband L-band service, Fleet Xpress provides the continuous connectivity MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy. Captain Gregario C. Ogatis, Master of the MOT-managed bulk carrier Santa Isabel, described Inmarsat’s connectivity solution as “very simple, convenient and fast”, adding that it allows onboard personnel to “communicate easily with shore”. Quick information exchange Building on Ogatis’s remarks, Tesuro Ideguci, Chief Engineer, MOT, commented, “Inmarsat’s Fleet Xpress has allowed us to communicate with external parties and receive information very quickly, which is extremely beneficial." "Thanks to Fleet Xpress, I believe the way we work on land and sea will change significantly in the future, and we will see improvements in all aspects of information exchange.” Synthetic virtual networks Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its route As well as supporting fast and seamless business communications, Fleet Xpress helps crew members make the most of their free time by allowing them to keep in touch with family and friends and enjoy online entertainment on their own devices without interfering with mission-critical connectivity. Using synthetic virtual networks, Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its own dedicated route to the user. The bandwidth used outside of these essential services also receives its own pipeline, ensuring connectivity for both business and leisure, and achieves the highest standards in speed, reliability, and security. Enhanced efficiency, reduced fuel consumption Santa Isabel also benefits from Inmarsat’s Fleet Data, a maritime Internet-of-Things (IoT) platform that provides full data ownership and access from a single customisable dashboard. Fleet Data transforms the way ship owners and managers collect, transfer, analyse, store, and share vessel data for quick performance-based and historical benchmarking across the fleet. These insights support enhanced decision-making for more efficient and sustainable operations. Fleet Data is available on the Fleet Edge platform – a versatile, fully integrated modular solution giving Santa Isabel a path to operational efficiency, decarbonisation, and enhanced crew welfare over the Fleet Xpress network. Improving operational efficiency IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule Shunsuke Miyazaki, General Manager, of Mitsubishi Corporation (MC) Shipping, which owns Santa Isabel among other MOT-chartered or managed ships, commented, “In the trend towards global decarbonisation, the key is how to operate vessels more efficiently to reduce fuel consumption. We use Fleet Data to send information from the ship in real-time, and we leverage these insights to improve operational efficiency.” For the two MC-owned vessels already deploying Fleet Data, Miyazaki added, the IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule. Connectivity with certainty As the maritime industry becomes increasingly digitalised, more and more shipping companies are embracing new technologies and upgrading their satellite communications services to enable digitalisation, decarbonisation, and crew connectivity. This is why so many shipping companies rely on the Fleet Xpress suite of services, all delivered through our world-pioneering satellite network. Digital service adoption Inmarsat’s services are built to deliver control over the entire connectivity ecosystem" “We are delighted to support Mitsubishi Ore Transport solutions in driving the adoption of digital services on board,” said Gert-Jan Panken, Vice President of Sales, Inmarsat. “Inmarsat’s services are built to deliver control over the entire connectivity ecosystem." Build-in competitive advantages "With Fleet Xpress, shipping companies like MOT gain access to a host of opportunities to optimise and drive efficiency, the ability to attract and retain the most talented crew, and the capacity to future-proof operations and build-in competitive advantages." "By providing a clear view of what satellite communications mean to your business today and tomorrow, Inmarsat offers connectivity with certainty.”

