Crews
Langstone Harbour, a designated Site of Special Scientific Interest (SSSI), has completed the successful installation of a comprehensive marine environmental monitoring solution provided by OceanWise. Langstone Harbour, located between Portsmouth and Chichester on the southern coast of Hampshire, is renowned for its rich wildlife and is designated as a Special Protection Area (SPA). Managed by the Langstone Harbour Board, it is a hub for a range of activities, including commercial shipping, fis...
Brunvoll has secured another contract with Myklebust Shipyard for the delivery of a comprehensive thruster package. This confirms the option for an additional vessel for REM Offshore, originally announced in May of this year. Like the previous contract, this agreement also includes an option for a third additional vessel. Brunvoll’s thruster package Brunvoll’s thruster package consists of two propulsion azimuth thrusters and a tunnel thruster Brunvoll’s thruster packag...
DNV has released a competence standard (ST) for methanol and a recommended practice (RP) for ammonia, to enable crew and shipowners to tackle the safety risks and challenges posed by the introduction of new alternative fuels and technologies through shipping’s decarbonisation. While new fuels and technologies are key to achieving maritime decarbonisation, their adoption necessitates robust safety and competence frameworks. DNV’s Insights platform The number of vessels typed with a...
Ulstein Verft is pleased to welcome BS Offshore back at the shipyard. This will be their first ULSTEIN SX222 CSOV. The hull arrival marks a significant milestone in constructing this state-of-the-art vessel, designed to support the growing offshore wind industry. The SX222 design, known for its superior operational performance and seakeeping abilities, will ensure the vessel meets the highest efficiency and safety standards. New innovative offshore vessels The vessel is now po...
ClassNK has released guidance to assist in the safe evacuation of crew members from vehicle carriers in the event of a cargo hold fire. Additionally, the world’s first notation, ‘AMEVC(EV),’ has been established to indicate vessels equipped with additional measures to facilitate safe evacuation. Evacuation challenges Vehicle carriers often have accommodation areas and life-saving equipment, such as lifeboats Vehicle carriers often have accommodation areas and life-saving eq...
Kongsberg Digital is proud to announce an important new simulator contract with Noble Corporation, one of the world’s pioneering offshore drilling companies, headquartered in Houston, Texas USA. DP simulators The contract includes the delivery of state-of-the-art navigation, engine, and dynamic positioning (DP) simulators based on Kongsberg Maritime’s market-pioneering K-Pos DP system. The simulators will be tailored and integrated with Kongsberg Maritime’s Riser Monitoring...
News
Hefring Marine, a pioneer in intelligent marine technology, has been awarded a grant by the Icelandic Transport Authority (Samgöngustofa) to further critical research on injuries experienced by mariners aboard vessels. This prestigious grant underscores Hefring Marine's commitment to enhancing safety standards within the maritime industry. Building on extensive research conducted in 2023 with support from the Icelandic Student Innovation Fund, backed by Rannís (The Icelandic Centre for Research), Hefring Marine identified that 65 percent of surveyed mariners had suffered injuries during their time aboard, with 69 percent of those injuries requiring medical attention. These statistics highlight the pressing need for innovation in maritime safety systems. Key objectives of the awarded project The awarded project, titled "SKAÐLEG ÁHRIF TITRINGSÁLAGS Á SJÓMENN" (The Impact of Whole-Body Vibration on Mariners), comprises two key objectives: Advanced research and data analysis: Diving deeper into the causes and patterns of mariner injuries to inform safety solutions. Innovative technology development: Designing a prototype operational guidance system to integrate with the Intelligent Marine Assistance System (IMAS), which helps vessel operators mitigate risks and enhance safety on board. Importance of safety in the maritime industry Grant represents a pivotal step in promoting the well-being of mariners and ensuring safer voyages for all In collaboration with the National Association of Small Boat Owners (Landssamband smábátaeigenda), Hefring Marine aims to reduce injury rates and elevate industry standards. This grant represents a pivotal step in promoting the well-being of mariners and ensuring safer voyages for all. Prof. Magnús Þór Jónsson, CTO and Co-Founder of Hefring Marine commented: "This grant from the Icelandic Transport Authority reaffirms the vital importance of safety in the maritime industry. We are honoured to contribute cutting edge research and technology to protect mariners and improve their working conditions." Innovative methods for mitigation Hefring Marine was established based on groundbreaking research into shock and impact exposure on high-speed boats, a focus that remains central to the company's mission. A notable example of this commitment is its participation in the Intelliboat project, led by VIKING Life-Saving Equipment A/S. This initiative explored the effects of wave impacts and vibrations on human performance and safety, with the goal of exploring innovative methods for mitigation and prevention of the often severe effects of such impacts on operators and crew onboard high-speed vessels. Hefring Marine continues to lead the charge in intelligent marine technology, driving innovation with a focus on safety and operational excellence.
The hybrid police boat WS1 ‘Bürgermeister Brauer’ was officially welcomed in the Port of Hamburg. After a construction period of almost two years at the Estonian shipyard Baltic Workboats AS, the boat was transferred by sea to Germany and will start its service with the Hamburg water police next year. In the presence of the Senator for Economics and Labour, Dr Melanie Leonhard, the 29.4-metre-long police boat with environmentally friendly plug-in hybrid drive docked at the Überseebrücke. Also on board were Jens Meier, CEO of the Hamburg Port Authority, Karsten Schönewald, CEO of the Hamburg Fleet, and Olaf Hagenloch, Deputy Head of the Hamburg Water Police. Sea trials and crew training The new boat will replace the aging coastal patrol boat of the same name in service at present next year Particular mention should be made of the powerful 2 x 500 kW electric motors, which enable a minimum of two hours of travel at seven knots on electric power alone. Once the sea trials and crew training have been completed, the new boat will replace the aging coastal patrol boat of the same name in service at present next year. The new WS1 marks the start of the renewal of the Hamburg police boat fleet. Shortly, the new WS3 ‘Bürgermeister Weichmann,’ a slightly smaller, similar-built vessel, will reach Hamburg and, together with the WS1, will undergo the commissioning phase with crew training. Promotion of sustainable technologies A third vessel, identical to the larger WS1, is to be delivered in the course of 2025. The Hamburg fleet is pursuing the idea of a type of vessel that, on the one hand, draws on proven ship designs but, on the other hand, is precisely tailored to the needs of the Hamburg water police. The Port of Hamburg is actively pursuing a transition towards greater climate neutrality with the aim of becoming climate-neutral by 2040. The promotion of sustainable technologies and energy sources plays a central role in this. Use of hybrid watercraft The use of hybrid watercraft by the water police is a further measure to reduce emissions Since 2017, the Fleet Hamburg has been pooling its municipal watercraft and has already made significant progress. The use of hybrid watercraft by the water police is a further measure to reduce emissions. Hamburg's Senator for Economic Affairs, Dr. Melanie Leonhard, said: "We are reducing emissions by using modern technologies – the new ships in the Hamburg fleet are protecting the climate by using advanced technology in the Port of Hamburg. This brings us one step closer to achieving our climate targets and reduces our dependence on fossil fuels." Low-emission propulsion technologies Karsten Schönewald, CEO of Flotte Hamburg: "With the introduction of the first hybrid police boat in the Port of Hamburg, we are taking an important step towards a sustainable future for watercraft. We are proud to equip the water police with low-emission propulsion technologies and thus actively contribute to reducing emissions in our city." Olaf Hagenloch, deputy head of the water police: "With this new vessel, the Hamburg water police will continue to carry out their duties in the Port of Hamburg, on the Lower Elbe and in German territorial waters with their usual professionalism and high quality. The fact that this is now being done with an environmentally friendly propulsion system underlines the compatibility of environmental protection and the performance of water police duties." Technical data Length overall: 29.4 m Beam overall: 7.4 m Maximum draught: 2.2 m Maximum speed: > 25 kn Electric speed: > 12 kn Special features Hybrid drive with 2 hours of battery-electric driving time Synthetic environmentally friendly fuel GTL Wave-piercing bow for a particularly smooth ride in rough seas Automatic trim system for more comfort and reduced fuel consumption
Anthony Veder, a gas shipping company, has strengthened its partnership with NAPA, a global provider of maritime software and data services, to expand the use of electronic logbook solutions and ease regulatory reporting. The joint project between the two companies introduces the functionality of voyage reporting, helping Anthony Veder streamline onboard data collection and fulfill increasingly complex environmental regulatory requirements. Thus, the project contributes to shipping meeting its net zero target. NAPA Logbook With the new voyage reporting functionality, the NAPA Logbook reduces the administrative burden of regulatory compliance. It covers systems EU-MRV (Monitoring, Reporting, and Verification), and the IMO-DCS (Data Collection System). The digital platform enables the integration of logbooks with regulatory reporting; data is automatically shared with shoreside teams, via NAPA Fleet Intelligence, and with the verifier, in this case, DNV Emission Connect, in near real-time. DNV approval The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV With type approval from DNV, the platform goes beyond normal electronic logbook systems and can submit data for verification to DNV, as well as other relevant stakeholders in the supply and emissions chain, in a format that meets all requirements. This provides end-to-end compliance support, removes duplication of work, and offers invaluable time savings for crew which would otherwise not be possible. Digitalisation With the initial success of NAPA Logbook across Anthony Veder’s fleet, the company is ramping up digitalisation to ease seafarer workload, boost morale, and reduce the margin for error. Since 2023, NAPA Logbook has already cut 2000 administrative hours per vessel – a 14% reduction. Digital tools can help reduce the administrative workload onboard and contribute to the accuracy of reporting, which is becoming increasingly important with regulations like the EU ETS and FuelEU Maritime. Regulatory reporting compliance Björn van de Weerdhof, Commercial and Sustainability Director at Anthony Veder, said, “Being compliant with regulatory reporting is important but is becoming more and more complex. Without digitisation and automation, this would be increasing time spent by our seafaring colleagues." "By partnering with NAPA, integrating their digital logbook, and through digital solutions and automated entries, we significantly reduced the administrative burden on board so our seafarers can focus on their core duties: operating our vessels in a safe, sustainable, and efficient way for our customers.” Streamlining data collection Tommi Vihavainen, Director, of Development, NAPA Safety Solutions, added, “We recognise that crew is already stretched thin, and new regulations only add to this challenge by diverting precious time from primary responsibilities." "Digitalisation of paper-based processes, using tools like NAPA Logbook, can streamline onboard data collection and reporting to minimise duplication of work, ensure regulatory compliance, meet sustainability goals, and, ultimately, contribute to creating a more satisfying work environment. We are proud of the positive impact we’ve been able to create for Anthony Veder in such a short amount of time and look forward to continuing our partnership.” Decarbonisation transition 54% of seafarers reported an increase in their workloads, 44% said they are feeling higher levels of stress The global maritime industry, and seafarers in particular, are grappling with new ways of working to support shipping’s decarbonisation transition. A recent survey by the International Seafarers Welfare and Assistance Network (ISWAN) revealed that 54% of seafarers reported an increase in their workloads, 44% said they are feeling higher levels of stress, and 33% fear potential criminalisation due to complex reporting requirements. Operational safety and efficiency Digital, integrated solutions like NAPA Logbook, through NAPA Fleet Intelligence, allow teams to tackle these issues by doubling down on automation, thereby minimising errors and saving time, and offering a holistic approach to operational safety and efficiency. By enabling data to be exchanged between systems, teams can enhance situational awareness and make better-informed decisions on critical operational matters and regulatory compliance, with greater speed and accuracy, as the platform also gives a centralised data overview.
Complex shipbuilding projects demand efficient system integration and commissioning from suppliers to meet tight construction schedules. Vard Electro has demonstrated its proven competence in this area with a debut delivery for the Ulstein Verft shipyard of integrated SeaQ Communication solutions for two advanced newbuild CSOVs now delivered by the Norwegian yard for Olympic. Diverse SeaQ systems “The ability to see the bigger picture of such a system delivery is essential to overcome potential obstacles in the integration process and ensure efficient execution of a newbuilding project,” says Vard Electro’s Project Manager Fredrik Løken. “As such, we have benefitted from being part of the Vard shipbuilding group as this has given us broad experience and strong expertise in the installation and integration of diverse SeaQ systems delivered for scores of newbuilding projects. This means we understand the challenges as both a product supplier and system installer so we can provide a seamless implementation.” Sustainability factor Ground-breaking newbuilds are the first CSOVs to employ Ulstein’s TWIN X-STERN® solution The initial delivery for Ulstein on the two construction service operation vessels (CSOVs), Olympic Boreas and Olympic Notos, to be deployed in the offshore energy sector has proven a prestigious project for Vard Electro that underpins its sustainability goal, while also launching a successful collaboration between yard and supplier. The ground-breaking newbuilds are the first CSOVs to employ Ulstein’s TWIN X-STERN® solution with four main propellers fore and aft to optimise the use of thruster power in dynamic positioning. SeaQ Communication package This, together with hybrid diesel-electric propulsion, battery storage and smart energy management, has resulted in a reduction in fuel consumption of close to 50%, according to Olympic. The green profile of these vessels is supported by the SeaQ Communication package of robust information and communication technology (ICT) infrastructure geared to enhancing safety and operational efficiency, as well as the comfort of crews during prolonged stints at sea. Tailored communication system Vard Electro has supplied a state-of-the-art ICT package for each vessel comprising communication Vard Electro has supplied a state-of-the-art ICT package for each vessel comprising communication, safety and crew welfare systems, including CCTV for security and navigation, internal voice communication system (VCS), public address and general alarm system (PAGA) and IPTV entertainment system, along with IT racks, networking and integration services. Løken points out that CCTV is vital for precise navigation, such as in port or between wind turbines, while emergency situations necessitate effective communications, both between crew members and over the PAGA system, to ensure the safety of personnel. Modular SeaQ Communication Furthermore, IPTV contributes to a comfortable environment for crew during leisure time to ensure they can rest properly between shifts. The modular SeaQ Communication solutions are scalable and flexible so could be tailored to specific client and class requirements for the Olympic vessels, having been previously delivered by Vard Electro for more than 100 units, including several CSOVs, according to Løken. Support from design to operation Vard Electro’s comprehensive knowledge of the entire scope of a newbuild, as well as relevant class standards and regulations, meant it was able to provide valuable input and assistance to Ulstein in the design and engineering phases to support system integration. Vard Electro’s true aftermarket unit assists shipowners in the active phase of a vessel During construction and commissioning, its in-house electrical installation team could prioritise tasks, make necessary adaptations and effectively work around challenges, as well as co-ordinate with sub-suppliers for timely procurement of equipment. Furthermore, Vard Electro’s dedicated aftermarket division assists shipowners in the operational phase of a vessel by providing additional components for system upgrades, while service engineers involved in commissioning also perform ongoing maintenance to ensure continuity of expertise and support. Expanding deliveries to external yards “This initial collaboration with Ulstein has given us the opportunity to demonstrate Vard Electro is a trusted and reliable supplier able to deliver high-quality systems with efficient integration and commissioning that are vital to successful project execution throughout the newbuilding cycle. It has also contributed to strengthening the Norwegian maritime cluster,” Løken says. Vard Electro now aims to build on its positive relationship with Ulstein, as it also seeks to expand the scope of deliveries to external yards with broader integrations of the SeaQ suite of systems, covering power, bridge & navigation, control, communication and remote operations.
Global marine energy supplier, Peninsula, has announced the expansion of its physical supply network into the Houston market and surrounding areas. Peninsula’s re-entry will be led by Houston-based Mike Parrent who joins Peninsula as Physical Desk Manager, and Elisha Frank as Operations Executive. Peninsula’s hybrid business model Both Mike and Elisha bring deep experience and are well-known to global customers for their knowledge and service delivery. Full operations will commence in December. John A. Bassadone, CEO of Peninsula, said: "We’re delighted to be back in the Houston area, offering fresh regional supply options. It’s testament to Peninsula’s hybrid business model that we can work physical business, alongside our reselling portfolio to optimise choice and quality for our global customer base." Peninsula’s global scale Mike Parrent said: "Elisha and I are excited to get regional physical supply flowing. The combination of Peninsula’s global scale and customer reach, combined with our expertise and insight, will bring significant value." He adds, "We’re confident that customers will put their trust in this formula and we’re proud to join Peninsula as the business continues to thrive and expand."
PPG has announced its 50th order for the electrostatic application of marine fouling control coatings. The project will be carried out on the VLCC SIDR, a 336-metre oil tanker operated by Bahri Ship Management at the Asyad Drydock Company shipyard in Oman, using PPG NEXEON™ 810 antifouling coating on the hull. Electrostatic coating applications Leveraging decades of experience in the aerospace and automotive industries, PPG introduced electrostatic coating applications to the shipping industry just over a year ago. Electrostatic application provides an increased transfer efficiency compared to airless spraying, resulting in sustainability benefits including significant reductions in overspray and waste. PPG has optimised its hull coatings for this application technique. Environmental regulations “Ship owners and shipyards are looking for innovative solutions to comply with stricter environmental regulations and meet their sustainability goals – these include low-friction hull coatings that reduce vessel greenhouse gas emissions and provide sustainably advantaged application procedures,” said Sijmen Visser, PPG Sales Director, Marine EMEA, Protective and Marine Coatings. Sijmen Visser adds, “Electrostatic application is quickly being adopted by large shipping companies and by shipyards in Europe, Singapore and China.” Conventional fouling control coatings Electrically charged paint particles are precisely guided toward the grounded surface of the vessel Conventional fouling control coatings are generally not suitable for electrostatic applications. However, the formulation of both PPG Nexeon antifouling and PPG SIGMAGLIDE® fouling release coatings allow them to be sprayed electrostatically. Electrically charged paint particles are precisely guided towards the grounded surface of the vessel, leading to an exceptionally even distribution and the formation of a uniform and ultrasmooth, long-lasting film layer. Performance indicators “We strive to conduct our business sustainably and constantly measure our environmental impact through performance indicators,” said Khalid Alhammad, Ship Management President at Bahri. Khalid Alhammad adds, “A cornerstone of our environmental strategy is to reduce carbon emissions of our entire fleet. To achieve these objectives, we constantly adopt the latest technologies in hull coating that would help reduce vessel emissions. Combining that with a sustainable coating application technique makes it an attractive combination to us.” PPG Sigmaglide coating In a recent project, EDR Antwerp shipyard confirmed a 40 percent reduction in overspray with the electrostatic application of PPG Sigmaglide coating on a RoRo passenger vessel from Stena Line. With reduced overspray, the electrostatic application provides a cleaner operation and improved work environment for the applicators compared to airless spraying. Shipyards spend less time masking the vessel and cleaning the dock, saving time and costs.
Expert commentary
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Demand for ammonia is being transformed by the energy transition. Until recently used as an input for fertiliser and chemical products, new markets for green and blue ammonia are emerging, replacing fossil energy in power generation, steel production and marine fuel. Today some 200m tonnes per annum of ammonia is produced worldwide with 20m tpa transported in LPG carriers. The scale of the emerging and potential demand will see these figures rise; how quickly this can be achieved will determine its take-up as a shipping fuel. New or evolving technology The interest in ammonia stems both from its ‘zero emissions’ when used as fuel and because its production isn’t dependent on biogenic carbon sources. As the global economy transitions away from fossil-based fuels, biogenic carbon – from captured CO2, electrolysis and even waste sources – will be subject to increasing competition from other consumers. Shipyards around the world are considering the advantages that operating on ammonia may provide Accordingly, owners, operators, designers, and shipyards around the world are considering the advantages that operating on ammonia may provide. However, when considering any new or evolving technology, it is important to have a clear understanding of not only the benefits, but the challenges that may be involved. Challenges of ammonia bunkering Biogenic carbon will increasingly replace fossil-based carbon in many of the products in use today in industry and consumer goods. Competition from the energy and aviation sectors will inevitably lead to increased prices but production capacity will need to come from industrial sources rather than biomass harvested for this purpose. ABS has produced a Technical and Operational Advisory on Ammonia Bunkering in response to the need for better understanding by members of the maritime industry. It is intended to provide guidance on the technical and operational challenges of ammonia bunkering, both from the bunker vessel’s perspective (or land-side source) and from the receiving vessel’s perspective. Managing emissions Particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions The carbon emissions from the combustion of ammonia are associated with and dependent on the type and amount of pilot fuel used. The use of biofuel as pilot fuel may further reduce the emissions. In addition, the emissions of sulphur dioxide, heavy metals, hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs) drop to zero (or near zero, depending on the pilot fuel used); and particulate matters (PM) are also substantially reduced compared to conventional fossil fuels. However, particular attention needs to be paid to the potential presence of ammonia slip, N2O or NOx emissions, due to the imperfect combustion of ammonia and the use of pilot fuels. These emissions will need to be kept as low as possible by further adjustment and development of the engine technology or using an on-board exhaust gas treatment technology. Currently, hydrogen for ammonia production is typically produced by means of steam methane reforming (SMR) or autothermal reforming (ATR) of natural gas (grey ammonia). If the CO2 emissions from the process of converting natural gas are captured and stored, the ammonia is typically referred to as ‘blue’. Production of blue ammonia Moreover, the production of blue ammonia retains a dependency on fossil fuels. Therefore, ‘green ammonia’, which is produced from hydrogen made from renewable energy sources (green hydrogen), is generally considered to be the end-solution for decarbonisation which leads to a sustainable fuel cycle, while blue ammonia is seen to have an intermediate role. The potential well-to-wake GHG emissions of green ammonia are estimated to be around 91% lower than for grey ammonia, and 85% lower than HFO and MGO. The grey ammonia production network is already well established and global, ensuring easier accessibility across major ports worldwide. Infrastructure and regulation Specific requirements for ammonia bunkering are under discussion by all marine stakeholders This will help green ammonia become readily available for bunkering and distribution once sufficient production and infrastructure are in place. On the other hand, when compared with liquid hydrogen or LNG which can be stored at temperatures of −253°C and −162°C, respectively, liquid ammonia can be stored and transported at −33°C near atmospheric pressure, which allows for easier adaptation of existing fuel infrastructure on ships and at ports. While specific requirements for ammonia bunkering are under discussion by all marine stakeholders, the requirements for shipping ammonia as cargo, including loading and unloading operations, have been established in the marine industry and are covered by the IMO International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) and incorporated in the ABS Rules for Building and Classing Marine Vessels Part 5C Chapter 8 “Vessels Intended to Carry Liquefied Gases in Bulk”. For the use of ammonia as bunker fuel, all segments of the marine industry (including IMO, Class Societies, Port Authorities, and industry agencies) are working to develop requirements and procedures specific to ammonia bunkering operations. Refer to the section “Regulatory Organisation” of this Advisory for the current activities of each marine industry segment. Bunkering Options Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels There are three main methods of bunkering ammonia to ships. Truck-to-ship is the process of transferring ammonia from trucks or truck trailers to a receiving vessel using ammonia as fuel. Typically, the tanks on the truck are pressurised and store ammonia at ambient temperature. To increase bunker capacity and transfer rates, a manifold may be used to connect several trucks simultaneously to supply the receiving vessel. Truck-to-ship transfer operations may provide greater operational flexibility, but at the same time could induce operational restrictions and limitations by the local Authority. Ship-to-ship bunkering is the most popular mode for transferring fuel to ocean-going vessels, such as container ships, tankers, and bulk carriers, which require large fuel capacities and greater quantities of fuel to be bunkered. Terminal-to-ship bunkering transfers ammonia from an ammonia storage terminal pipeline connected to receiving vessels via a hose assembly or loading arm. Ammonia Safety Ammonia is toxic and reacts violently and explosively with oxidising gases such as chlorine, bromine, acids, and other halogens. When ammonia is inhaled, swallowed or absorbed via skin contact, it reacts with water in the body, producing ammonium hydroxide. Due to these toxicity issues, ammonia is classified as a hazardous substance, with the level and time of exposure being controlled by several national standards. The level of competency needed for each task depends on the role and duties of the individual A combination of both training and operational experience is key to developing the required competencies for ammonia bunkering operations. The level of competency needed for each task depends on the role and responsibilities of the individual. Therefore, the training may vary from person to person. Seafarers on board ships using ammonia fuel should have completed training to attain the abilities that are appropriate to the capacity to be filled, and duties and responsibilities to be taken up. The master, officers, ratings and other personnel on ships using ammonia fuel should be trained and qualified in accordance with regulation V/3 of the STCW Convention and section A-V/3 of the STCW Code, taking into account the specific hazards of ammonia used as fuel. Ship-specific training Ship-specific training is to be reviewed and approved by governing regulatory authorities. The IGF Code provides detailed training requirements for ships that use gases or other low-flashpoint fuels. Ships under the jurisdiction of flag administrations signatory to SOLAS should ensure that seafarers should have the specified certificates of proficiency and the administration shall approve courses and issue endorsements indicating completion of the qualification. All crew must be provided with and be made aware of the emergency procedures and must be trained in any roles and responsibilities they may have. Training, drills and exercises to prepare crews for emergencies are to be provided. Lessons learned from past operations should be incorporated to improve emergency procedures. Procedures should cover all scenarios specific to the ship, type of incident, equipment, and associated areas.
Seafaring is often deemed a ‘risky occupation’ when it comes to both physical and mental health, involving highly demanding work alongside long working hours, often poor social support, and extended periods at sea. In the Sailors Society’s recent 2022 Cadet Report, they found 57% of Generation Z, those born between 1996-2010, cadets from around the world had submitted scores suggesting anxiety, and that most believed loneliness would be the main cause of any mental health issues they faced. 79.5% also said their choice of shipping company would depend on how it treats seafarers. Seafarer well-being The need for improved seafarer well-being has led to the UK government’s allocation of £2.4 million for projects supporting seafarers’ mental health, maritime skills, diversity, and careers. This investment has been made following the Maritime 2050 report, which highlights that the high incidence of mental health conditions is primarily due to the pressures, nature, and isolation of working at sea and suggests changing technology be utilised to improve sea connectivity. Is LEO services the solution? Satellites have been imperative for both operational and welfare services, in addition to positioning and navigation Satellites have enabled communications at sea for over 50 years. They have been imperative for both operational and welfare services, in addition to positioning and navigation. Generally, communications for major maritime platforms have been provided by Geosynchronous Orbit (GEO) satellites, delivering a “broadband” style service from a few Kbps to multiple Mbps. However, Low Earth Orbit (LEO) satellites are not a new proposition. Early LEO satellites, such as the Soviet Sputnik 1 launched in 1957, provided low single-digit Kbps, while more recent Iridium NEXT satellites provide hundreds of Kbps of resilient service. New services Thanks to significant investments in ‘broadband’ high throughput LEO satellites, new services offering ‘fibre-like’ high-speed low-latency connectivity of about 100 Mbps have become available. These services enable high throughput at a reasonable cost and, if configured as part of a hybrid solution, allow for operational and welfare services to be separated. This protects welfare services for seafarers, offering more access to services like messaging and video communications, streaming platforms, and gaming. The importance of on-board connectivity The surge in demand for LEO connectivity reflects growing expectations from seafarers, and better awareness from employers, around social well-being. With long periods of separation from families and friends and work that often involves high-risk situations, seafaring can lead to a combination of anxiety, stress, and isolation. A lack of access to mental health support services can contribute to depression and increases seafarers’ risk of unhealthy coping strategies resulting in serious personnel issues and retention difficulties. Addressing communication issue The survey highlighted that 63% would consider moving to another shipping company that offered better connectivity The seafarers’ trade union, Nautilus International, further demonstrated the importance of connectivity in 2017 when it published a survey showing that 80% of its members considered communications the second most important integral collective bargaining issue. It also highlighted that almost two-thirds (63%) would consider moving to another shipping company that offered better connectivity. Need for LEO services These demands have since been exacerbated. The COVID-19 pandemic saw many seafarers facing longer periods of isolation due to imposed restrictions and extended contracts, made worse for those unable to call or message their loved ones. Generation Z crews have also grown up accustomed to having instant access to connectivity and can be reluctant to accept a job that takes this away. Together, these forces have pushed the need for LEO services to the forefront of maritime considerations, as a viable solution that meets welfare and operational needs. The benefits of LEO services LEO services offer high throughput connectivity combined with low latency, allowing crew members to access Wi-Fi and download speeds similar to those provided by home broadband. This, in turn, provides numerous benefits for physical and mental well-being: Real-time communication: Personnel can stay in touch with their loved ones and support networks while at sea, helping to reduce feelings of isolation and loneliness. Mental health support: Improved access to support services allows crew members to connect with mental health professionals and receive support for conditions like depression, anxiety, and PTS. Enhanced safety: Better connectivity allows for real-time tracking and the monitoring of location, weather data, and emergency response services, which can help prevent accidents and ensure quick response times in the event of an emergency. Remote monitoring of seafarers' health and well-being through wearable technology can also be used to monitor vital signs and detect early indications of health issues. Training: LEO services provide potential for crews to engage in virtual training, which is especially useful in cases where members are at sea for extended periods. On-demand access to training resources allows crew members to develop their skills and knowledge at sea, encouraging career advancement. Virtual training also helps establish best practices that promote onboard safety. Overcome risks with a hybrid strategy The combination of LEO and VSAT services allows large quantities of data to be exchanged at broadband speeds Relying solely on LEO satellites is a risky strategy, putting operational priorities in conflict with crew welfare, as using data for one negatively impacts the data available to the other. To avoid this, LEO services can be paired with a guaranteed VSAT solution offering a committed information rate (CIR), to ensure mission-critical operations are not compromised and to protect the high-throughput connectivity most suited to provide well-being support services. The combination of LEO and VSAT services allows large quantities of data to be exchanged at broadband speeds, and enables real-time communications and remote monitoring for operational matters, all without affecting crew services. The key to choosing the right hybrid solution A vessel and the needs of its crew members must be considered before choosing a service. For instance, maritime operators need to consider whether they require a solution with built-in access to ports, as some network operators don’t manage regulatory access. Using such a solution in ports without pre-approval can lead to significant consequences. They also need to think about the operational conditions, ensuring their equipment has been built to withstand the environments it will be used in. Additionally, a CIR is crucial for most professional-grade operations, ensuring connectivity for operational and welfare purposes is never compromised. Resilience, support, and assurance Emerging LEO constellations provide new options for maritime operators that enable operational efficiencies When delivered with the right resilience, support, and assurance and fused with a network service that guarantees connectivity emerging LEO constellations provide new options for maritime operators that enable operational efficiencies, increased safety, and security, greatly improved on-board morale, and support longer-term retention. This means they can invest in both their crew and long-term planning. Safety and career advancement Officers and crew will be able to see that they are working for an employer that cares about their welfare. Contact with home will only be restricted when operational tasks dictate, rather than because the vessel doesn’t have the bandwidth. Seafarers will also have the ability to catch up on entertainment, access social media, video and voice calling, and remote training that promotes safety and career advancement.
Harbour insights
Trusted by more than 3,000 ships worldwide, NAPA’s Safety Solution software has promoted ship safety and operational efficiency for 35 years, working closely with customers. NAPA's solutions aim to positively impact the maritime industry by simplifying and streamlining onboard and shoreside operations through digitalisation, reducing errors and workload for seafarers, enhancing safety, and enabling more sustainable decision-making. Paper-based system challenges “Historically, the maritime market has relied heavily on paperwork for various processes, including log-keeping, work permits, and regulatory reporting,” says Tommi Vihavainen, NAPA's Director of Development at Safety Solutions. “This reliance on paper-based systems led to numerous challenges, such as time-consuming administrative tasks, increased risk of errors, difficulty in data aggregation and sharing, and limited visibility for shoreside teams.” Software and data services NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers NAPA provides software and data services for ship design and operations to enable a safer, more sustainable, and future-proof maritime industry. NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers and is considered the global de facto standard in shipbuilding. NAPA's product line On the ship operations side, NAPA's product line includes NAPA Stability next-gen loading computer; NAPA Emergency Computer to provide clarity on ship vulnerability in critical moments; NAPA Permit to Work, which digitalises work permits and approval; and NAPA Fleet Intelligence, a cloud-based platform to enable shoreside teams to handle fleet safety, compliance, and optimisation. NAPA Logbook (along with the NAPA Status Board and Checklists) helps make electronic record-keeping, reporting, and compliance easy and error-free. Digitisation “Digitisation has transformed the management of information and data onboard vessels by automating tasks, standardising formats, and enabling real-time data sharing between ship and shore,” adds Vihavainen. “This has led to significant improvements in efficiency, safety, and compliance.” Efficiency, safety, and compliance Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations For example, electronic logbooks automate data entry, reduce errors, and facilitate easy regulatory compliance. Digital work permit systems streamline approval processes, enhance communication, and provide real-time visibility into ongoing work, improving safety and inter-department coordination. Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations and performance, identify trends, and make informed decisions for optimised operations. Proactive approach to safety at sea Digital ship stability systems, like NAPA Stability, can enable a proactive approach to safety at sea by providing real-time monitoring and analysis of a ship's stability parameters – for both intact and damaged stability. They integrate with a 3D model of the ship, known as a digital twin, which is based on data and models used during the ship design process. “These systems continuously monitor stability data, such as the vessel's metacentric height, and provide alerts if any IMO-set stability and loading criteria are unmet,” says Vihavainen. Real-time awareness “This real-time awareness allows for early detection of potential risks and facilitates timely corrective actions to maintain stability and ship safety in all conditions." Additionally, these systems can simulate different scenarios and provide decision support to the crew and shoreside teams in case of emergencies, such as grounding or damage to the hull, allowing for a more informed and proactive response. Cloud-based monitoring unlocks By analysing this data, shoreside teams can identify trends, benchmark performance, and make decisions Cloud-based performance monitoring solutions can unlock new operational efficiencies in the maritime market by providing insights in real-time, as well as collecting historical data for later analysis. NAPA’s onboard solutions, for example, can collect data from various sources, like all logbook data, such as a deck, navigational data, stability data, engine management systems, HVAC, tank data, waste, and water management, as well as other relevant onboard sensors. By analysing this data, shoreside teams can identify trends, benchmark performance, and make data-driven decisions to optimise various aspects of operations, including fuel efficiency, waste and water management, engine performance, and so on. Operational efficiency “The cloud-based nature of these systems enables seamless data sharing and collaboration between shipboard and shoreside teams, facilitating real-time monitoring, communication, and support,” says Vihavainen. “This accessibility to data and insights allows for more informed decision-making, proactive rectifications in operational practices, maintenance, and continuous improvement in operational efficiency.” Supporting shipping’s transition to decarbonisation The global maritime industry, and seafarers in particular, are grappling with new ways of working to support shipping’s decarbonisation transition. A recent survey by the International Seafarers Welfare and Assistance Network (ISWAN) revealed that 54% of seafarers reported an increase in their workloads, 44% said they are feeling higher levels of stress, and 33% fear potential criminalisation due to complex reporting requirements. NAPA Logbook By enabling data to be exchanged between systems, teams can enhance situational awareness Digital, integrated solutions like NAPA Logbook, through NAPA Fleet Intelligence, allow teams to tackle these issues by doubling down on automation, thereby minimising errors saving time, and offering a holistic approach to data management, operational safety, and efficiency. By enabling data to be exchanged between systems, teams can enhance situational awareness and make better-informed decisions on critical operational matters and regulatory compliance, with greater speed and accuracy, as the platform also gives a centralised data overview. Benefits Vihavainen says centralised data collection through platforms also benefits operations by: Providing a holistic view of fleet operations: 24x7 monitoring and real-time situational awareness at a granular level - per ship, per voyage, per leg. This comprehensive overview allows for better decision-making regarding safety, efficiency, and compliance. Facilitating data-driven insights: By analysing the collected data, operators can identify trends, benchmark performance, and implement strategies for continuous improvement. Enabling better support from the shoreside without the need for additional communications. Optimised Voyage Planning: By combining real-time weather data with historical performance data, operators can plan more efficient and safer routes, especially for cruise customers during the hurricane season, for instance. Predictive Maintenance: Analysing data from various onboard systems can help predict potential equipment failures, allowing for proactive maintenance and reducing downtime. Improving record keeping and promoting safety NAPA Logbook is an electronic logbook solution that aims to improve record keeping, simply shipboard admin work, and promote safety onboard vessels. It is approved by over 20 major flag states and DNV and ClassNK, and it is trusted by over 12,000 users globally. NAPA Logbook improves record-keeping and compliance by: Automating data entry, reducing seafarer workload: The system automatically fills in data for log entries, reducing the administrative burden on the crew. Standardising formats, reducing chances of mistakes: NAPA Logbook ensures that all log entries adhere to the required formats, minimising errors, and inconsistencies. Simplifying reporting: The system facilitates the easy generation of reports for various regulatory requirements, such as EU-MRV, MARPOL, ESG, and CII. Logbook integration For instance, with the new voyage reporting functionality, the NAPA Logbook reduces the administrative burden of regulatory compliance and covers the monitoring systems EU-MRV (Monitoring, Reporting and Verification), and the IMO-DCS (Data Collection System). The digital platform enables the integration of logbooks with regulatory reporting; data is automatically shared with shoreside teams, via NAPA Fleet Intelligence, as well as with the verifier, in this case, DNV Emission Connect, in near real-time. End-to-end compliance The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV, as well as other relevant stakeholders in the supply and emissions chain, in a format that meets all requirements. This provides end-to-end compliance support, removes duplication of work, and offers invaluable time savings for the crew which would otherwise not be possible. 14% reduction Here is a case example: Anthony Veder, a gas shipping company that implemented the NAPA Logbook in 2023 reports that it has already cut 2000 administrative hours per vessel – a 14% reduction. This time savings is not only from automated entry but also from automated reporting. With the initial success of NAPA Logbook across Anthony Veder’s fleet, the company is ramping up digitalisation to ease seafarer workload, boost morale, and reduce the margin for error. Digital tools can help reduce the administrative workload onboard and contribute to the accuracy of reporting, which is becoming increasingly important with regulations like the EU ETS and FuelEU Maritime. Replacing paper-based work permitting NAPA Permit to Work is a digital system that replaces the traditional paper-based work permit process for hazardous tasks onboard. NAPA Permit to Work has been developed through close collaboration with customers, such as Carnival Cruise Line and Virgin Voyages, to ensure it meets their specific needs and safety management system guidelines. The system allows for customisation according to each operator's unique processes. Miscommunication to mishaps Hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays Traditionally, hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays, oversight, and miscommunication – leading to mishaps. According to data from InterManager, 55% of accidents in the past 28 years have happened during planned work, with many incidents concentrated in high-risk areas like oil tanks and holds. Permit-to-work process Digitising the permit-to-work process can dramatically reduce the chances of human error, potentially preventing accidents before they occur. Apart from increasing efficiency, these digital permits also help ensure every step of the process is completed correctly and provide real-time visibility of high-risk tasks for both crews onboard and shoreside teams. This is especially important for newer seafarers, many of whom have joined the industry after the pandemic. They offer critical support for those still gaining experience, reducing the risk of accidents. Additionally, digitalising the process results in: Streamlined work process: The digital system eliminates the need for physical forms and signatures, saving time and reducing administrative burden. Comprehensive digital safeguards: The system acts as a checklist, ensuring that all necessary safety checks are completed before the start of any job. Enhanced communication and coordination: The system automatically notifies relevant departments and personnel with real-time status updates of ongoing work, improving coordination and transparency. Real-time monitoring and visibility: Both shipboard and shoreside teams have real-time visibility into ongoing work, enabling proactive safety management and faster response in case of issues. Benefits for shoreside teams NAPA Permit to Work provides shoreside teams with better fleet-wide visibility of ongoing work and conditions, enabling a proactive approach to safety and maintenance. This real-time data transparency allows for more efficient resource allocation, improved coordination of maintenance activities, and faster response to potential issues, ultimately leading to enhanced operational efficiency and reduced downtime. Comprehensive digital checklist NAPA Permit to Work will act as a comprehensive digital checklist The influx of new seafarers with limited experience post-pandemic presents challenges for the maritime industry. These challenges include increased workloads, higher stress levels, and potential safety risks due to unfamiliarity with complex tasks and procedures. Here, the NAPA Permit to Work will act as a comprehensive digital checklist to help seafarers ensure that no safety-critical steps are missed. Virtual guide and augments The system is designed so that no digital form is accepted unless all required safety checks are completed before the start of any job, significantly reducing the risk of oversight. Post-COVID, a large proportion of crew working aboard cruise ships are on their first contract with little at-sea experience. This functionality provides a virtual guide and augments previous training, eases handovers, and minimises the margin for error. Safety and efficiency As the maritime industry shifts toward a future marked by multi-fuel technologies and stringent environmental regulations, the operational demands placed on crews will only increase. But within this growing complexity lies an opportunity to rethink approaches to safety and efficiency. “Rather than overwhelming seafarers with more screens and systems, we need to harness digital tools and data in ways that simplify—not complicate—their work environments,” says Vihavainen. Expanding capabilities of digital tools When harnessed properly, it can lead to much bigger and newer areas of operational efficiency It is a misconception that solutions like NAPA Logbook and NAPA Stability only help with ship safety, data recording, and compliance. With cloud technology, the power of these digital tools extends far beyond their traditional roles, unlocking vast amounts of previously untapped data—up to 90% of ship data typically remains onboard, unutilised. This data spans everything from engine performance, and HVAC to waste, water, and tank management. When harnessed properly, it can lead to much bigger and newer areas of operational efficiency than achievable today. Real-time data sharing “By automating the collection and analysis of this data in real-time, and sharing it with shoreside teams, we also enable better ship-and-shore collaboration,” says Vihavainen. “As the complexity of modern maritime operations grows, cloud connectivity has become a critical tool in bridging the gap between onboard crews and shoreside teams.” Proactive voyage monitoring By allowing real-time communication and data sharing, shoreside teams can provide invaluable support in areas ranging from stability management and emergency response to proactive voyage monitoring and machinery issue resolution. “This level of collaboration is reshaping how we approach safety and efficiency at sea,” says Vihavainen. “These advances are more than just technological upgrades—they are transforming the relationship between seafarers and their shoreside colleagues.”
The maritime industry is taking important steps to improve cybersecurity, catching up rapidly by introducing other industries' best practices into information technology (IT) and operational technology (OT) onboard vessels. Work remains to be done to ensure a cyber-resilient worldwide fleet of maritime operations. The way forward is through collaboration among all major stakeholders. Remote-controlled and autonomous ships In the future, the marine industry will increasingly use remote-controlled and autonomous ships and infrastructure. One can imagine multi-ship, multi-infrastructure hybrid scenarios where a software failure or a cyber-attack could result in widespread damage. “Protecting this advanced marine industry will drive the need for even higher levels of cybersecurity, reliability, and robustness of marine automation systems and software,” says Svante Einarsson, Head of Maritime Cyber Security Advisory, DNV Cyber. Cybersecurity insights CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels Einarsson shares additional insights into cybersecurity for the maritime industry in our recent interview. DNV expanded its cybersecurity capabilities by acquiring Applied Risk in 2021 and Nixu in 2023, forming DNV Cyber with over 500 experts. This merger enhances maritime cybersecurity by integrating IT and industrial control system security services, offering comprehensive solutions from risk assessment to incident response. CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels, ensuring real-time threat monitoring and support to sustain regulatory compliance. Maritimeinformed.com: What are the cybersecurity vulnerabilities in the maritime market? What are the possible consequences and/or worst-case scenarios? Einarsson: The maritime industry faces several cybersecurity vulnerabilities, including the integration of IT and OT systems, unsecured Internet of Things (IoT) devices, outdated software, weak authentication, and human factors like phishing. The consequences of breaches can be severe, such as operational disruption, data theft, ransomware attacks, cyber-physical attacks, and supply chain disruption. A worst-case scenario includes hybrid incidents that compromise both IT and OT systems at the same time within highly trafficked areas (such as a port). Depending on the available time and alternative means, the vessel might run aground resulting in major oil spills, environmental disasters, and/or significant loss of life. These vulnerabilities and potential impacts highlight the critical need for robust cybersecurity measures in the maritime sector. Maritimeinformed.com: What is the role of regulations when it comes to cybersecurity in the maritime market, including IMO, IACS, and critical infrastructure regulations? How do regulations drive better cybersecurity practices? The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting Einarsson: Regulations play a crucial role in maritime cybersecurity by setting global standards and ensuring compliance. The International Maritime Organisation (IMO) mandates cyber risk management in Safety Management Systems, while the International Association of Classification Societies (IACS) requires cybersecurity integration in systems and ships throughout the lifecycle of a vessel for new builds contracted after July 1, 2024. The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting. These regulations drive better practices by standardising frameworks, holding organisations accountable, promoting holistic risk management, enhancing transparency, and fostering continuous improvement. This comprehensive regulatory approach forces all stakeholders in the industry (yards, vendors, and ship managers) to act and work together to implement effective cyber resilience. Maritimeinformed.com: How does greater awareness boost cybersecurity? What is the role of near misses in driving cyber awareness and investments? Einarsson: Greater awareness boosts cybersecurity by educating individuals and organisations about potential threats, leading to better prevention and response strategies. It fosters a culture of vigilance, reducing the likelihood of successful attacks. Near misses play a crucial role by highlighting vulnerabilities and demonstrating the potential impact of cyber threats without causing actual harm. These incidents drive investments in cybersecurity by showcasing the need for robust defences, and well-planned responses, and encouraging proactive measures to prevent future breaches. Maritimeinformed.com: What are the pitfalls of over-confidence and under-preparation when it comes to cybersecurity? Einarsson: Overconfidence in cybersecurity can lead to complacency, ignoring potential threats, and underestimating attackers. For example, relying on boundary protection only, and believing that a system is impenetrable might result in neglecting regular updates and patches, leaving it vulnerable to exploits. Under-preparation, on the other hand, means inadequate de fences, response plans, and drills. An example is the 2017 Equifax breach, where failure to patch a known vulnerability led to the exposure of sensitive data of 147 million people. Both pitfalls can result in significant financial and reputational damage. Maritimeinformed.com: What is the role of technology advancements in driving the need and awareness of cybersecurity (e.g., the impact of digitisation, decarbonisation, automation, etc.)? Digitisation and automation support decarbonisation also increase the need for cybersecurity Einarsson: Decarbonisation is one of the key shaping factors in maritime today. Technology advancements like digitisation and automation support decarbonisation but also increase the need for cybersecurity by expanding the attack surface and introducing new vulnerabilities. As industries adopt remote maintenance, IoT, artificial intelligence (AI), and other technologies, the complexity and connectivity of systems grow, making them more susceptible to cyber threats. An example is how scrubber systems with modern technologies such as remote connectivity are retrofitted onboard older vessels today, creating a new and potentially unmanaged gateway to the control systems onboard the vessel. In other words, cybersecurity enables digitisation and decarbonisation. Maritimeinformed.com: What is the labor situation when it comes to the skillsets needed for cybersecurity excellence? Is there a shortage of expertise and how can it be addressed? Einarsson: The cybersecurity industry faces a significant skills shortage, with a very large number of positions unfilled globally. This gap is driven by the rapid evolution of cyber threats and the increasing complexity of digital environments. To address this, organisations should adopt skills-based hiring, offer continuous training and upskilling, and create clear career paths. Attracting diverse talent and collaborating with educational institutions can also help bridge the gap. Emphasising both technical and soft skills is crucial for developing a robust cybersecurity workforce. Many times the best option is to combine different competencies of several people into an aligned team, such as superintendents with OT system and operation expertise with cybersecurity and IT fleet experts. Maritimeinformed.com: What is the emerging role of AI in cybersecurity, such as the ability to anticipate attacks before they happen? AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities Einarsson: AI can significantly enhance cybersecurity teams' effectiveness by providing advanced threat detection and predictive analytics. Machine learning algorithms analyse vast amounts of data to identify patterns and anomalies that may indicate potential cyber threats. AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities proactively. Additionally, AI automates routine tasks, freeing up human experts to focus on more complex issues. Human teams can assess AI-generated results, ensuring accuracy and context, and make informed decisions. Real-time threat intelligence and automated response systems ensure quicker mitigation of incidents, ultimately strengthening the overall security posture and reducing the likelihood of successful cyber-attacks. Maritimeinformed.com: What is the impact of geopolitics on cybersecurity? How does the geo-political situation contribute to risks? Einarsson: Geopolitics significantly impacts cybersecurity by increasing the frequency and severity of cyber-attacks. Conflicts like the Russia-Ukraine war have led to coordinated cyber and hybrid offensives, targeting critical infrastructure globally. Geopolitical tensions contribute to risks by creating an environment where state and non-state actors exploit vulnerabilities and accessible assets for espionage, sabotage, and disinformation. The most obvious related threat in the maritime domain is GPS and AIS spoofing which is very common in military active areas. Incidents have already happened where the untrained crew has had their ship impounded after being misled into foreign state waters.
Augmented reality (AR) is making waves across various industries, and maritime is no exception. For maritime professionals, AR offers practical, real-time solutions that enhance safety, optimise operations, and improve decision-making both at sea and onshore. Whether it’s helping crews navigate complex environments, assisting in ship maintenance, or providing on-the-job training, AR’s ability to blend digital information with the physical world is proving invaluable in the fast-paced and challenging maritime environment. This article explores the benefits, applications, and potential of AR in the maritime industry. Understanding AR and its intent Augmented reality (AR) overlays digital content—such as data, graphics, and 3D models—onto the real-world environment, enhancing users’ perception of their surroundings. Unlike virtual reality (VR), which creates entirely simulated environments, AR supplements the real world with additional information that can be viewed through devices like smartphones, tablets, or AR glasses. Accuracy, efficiency, and safety The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment In the maritime context, AR intends to enhance the accuracy, efficiency, and safety of various operations. By providing real-time data and visuals, AR allows maritime professionals to make better-informed decisions, whether they’re navigating a vessel through busy waters, inspecting machinery, or managing cargo in a port. The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment, reducing risks, preventing errors, and increasing operational efficiency. AR applications in maritime operations One of the most significant applications of AR in the maritime industry is in navigation. AR can assist ship officers by overlaying critical navigation data—such as chart information, vessel traffic, weather conditions, and obstacles—directly onto the real-time view of the sea. This helps enhance situational awareness, particularly in congested waterways or during low-visibility conditions like fog or storms. With AR, navigators can visualise information directly in their line of sight, minimising the need to shift focus between different instruments or screens. Maintenance and repair operations Maintenance and repair operations are another area where AR has proven to be highly effective. Technicians can use AR glasses or tablets to access real-time information on ship components, including interactive 3D models, schematics, and procedural guides. This allows for faster and more accurate repairs, reducing downtime and the need for specialised training. AR can also connect remote experts with on-site technicians, enabling real-time support and troubleshooting. Training and simulation Crew members can undergo immersive training sessions where they interact with AR-enhanced environments Training and simulation are other critical areas benefiting from AR. New crew members can undergo immersive training sessions where they interact with AR-enhanced environments, practicing tasks such as emergency procedures or cargo handling in a risk-free setting. This improves skill retention and reduces the time required to get new hires up to speed. In ports, AR can assist with cargo management by displaying real-time data on container contents, destination, and status. This streamlines the loading and unloading process, reducing errors and improving overall port efficiency. Benefits of AR for maritime stakeholders The integration of AR technology delivers a wide array of benefits to different maritime stakeholders, from shipowners and operators to port managers and regulators. For shipowners and operators, AR enhances the safety and efficiency of vessel operations. Improved navigation capabilities lead to fewer accidents, while real-time maintenance support reduces the risk of machinery failures and extends equipment lifespan. Immersive, on-the-job learning experiences Additionally, AR can cut training costs by providing immersive, on-the-job learning experiences that don’t require expensive simulators or extended training periods. Port operators also benefit from AR technology. Enhanced cargo management, optimised logistics, and real-time tracking of goods improve turnaround times and reduce operational bottlenecks. With AR’s ability to overlay data onto physical containers or equipment, ports can achieve greater accuracy in inventory management and resource allocation. Real-time data and augmented visuals AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements For manufacturers and engineers, AR enables the visualisation of complex equipment and components in a real-world context. This can facilitate better communication between shipbuilders, designers, and engineers, leading to more accurate construction and faster problem-solving when issues arise. Regulators and maritime authorities can use AR to improve safety inspections and compliance checks. By providing inspectors with real-time data and augmented visuals, AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements more efficiently. Encouraging Collaboration Across the Maritime Ecosystem One of the most exciting aspects of AR is its potential to foster collaboration among various maritime stakeholders. By connecting on-site personnel with remote experts through AR-enabled devices, maritime operators can access specialised knowledge without requiring experts to be physically present. This promotes better teamwork across geographical distances, improving problem-solving and decision-making in real-time. Reduces downtime For example, when a ship experiences technical issues in a remote location, AR allows an engineer onshore to guide a crew member step-by-step through the repair process, using visual overlays and interactive tools to ensure accuracy. This reduces downtime and ensures that operations can continue without the need for costly or time-consuming travel. Reduces errors By combining AR with digital twin technology, maritime professionals can access real-time digital replicas Collaboration is also enhanced in ship design and construction. AR allows shipbuilders, designers, and engineers to visualise and manipulate 3D models in a real-world environment, making it easier to collaborate on complex projects and reduce errors during the construction phase. Moreover, AR can integrate with broader industry initiatives, such as digital twins and automation. By combining AR with digital twin technology, maritime professionals can access real-time digital replicas of ships or port equipment, enabling more effective monitoring, predictive maintenance, and resource management. Misconceptions and challenges in adopting AR Despite its potential, some misconceptions about AR remain within the maritime industry. One common misconception is that AR is solely for high-tech, cutting-edge operations and isn’t suitable for traditional maritime businesses. However, AR technology is highly scalable, and its applications can be adapted to a wide range of maritime operations, from small vessels to large container ships and ports. Another misconception is that AR requires significant upfront investment in expensive hardware and software. Long-term savings While initial costs can be high, particularly for advanced AR glasses and devices, the long-term savings in operational efficiency, reduced training times, and improved safety often outweigh these costs. Additionally, more affordable AR solutions are emerging, making the technology accessible to a broader range of operators. Enhance focus and reduce cognitive load AR devices could create, particularly in high-stress environments like ship navigation or cargo handling There are also concerns about the potential distraction that AR devices could create, particularly in high-stress environments like ship navigation or cargo handling. However, when implemented thoughtfully, AR is designed to enhance focus and reduce cognitive load by delivering critical information directly to the user’s line of sight, rather than requiring them to divert attention to multiple screens or devices. Coordinating AR with Industry Initiatives and Future Trends AR is increasingly being integrated with other technological advancements in the maritime sector, including automation, the Internet of Things (IoT), and digital twin technologies. By providing real-time insights and data visualisation, AR can help facilitate the use of autonomous ships and enhance the monitoring and management of connected maritime systems. As the industry continues to prioritise sustainability, AR can also play a role in promoting greener practices. By optimising navigation routes and improving fuel efficiency, AR can help ships reduce emissions and minimise their environmental impact. AR-enhanced training As the technology continues to evolve, its applications will expand, offering new ways to improve safety Furthermore, AR-enhanced training can focus on eco-friendly practices, reinforcing the maritime industry’s commitment to sustainability. Looking forward, AR will likely play a crucial role in the future of maritime operations. As the technology continues to evolve, its applications will expand, offering new ways to improve safety, efficiency, and collaboration across the industry. AR navigating the challenges of the 21st century Augmented reality is poised to become a transformative tool in the maritime industry, offering tangible benefits in safety, operational efficiency, training, and collaboration. By integrating AR technology into maritime operations, professionals can stay ahead of industry challenges, enhance decision-making, and foster greater collaboration across the global supply chain. With the right approach, AR will not only improve day-to-day operations but also help future-proof the maritime industry as it navigates the challenges of the 21st century. {##Poll1732855978 - What area of maritime operations do you think would benefit the most from augmented reality (AR)?##}
Case studies
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
GEM elettronica is proud to announce the conclusion of a strategic project to strengthen Lithuania’s defense capabilities, during which cutting-edge surveillance radars with airspace monitoring function were installed on four patrol ships of the Lithuanian Navy. The contract was executed successfully and within the agreed-upon timelines, thanks to the collaboration between the Italian defence companies Leonardo and GEM elettronica. Advanced radar system The heart of the system is the Columbus MK2 3D multi-mission radar developed and produced in house by GEM Elettronica, specially designed for coastal surveillance and naval applications, made with the latest technologies, which guarantee high detection performances for search and tracking of small and fast targets at both air and sea surface space, high reliability and availability with low maintenance and life cycle costs. It is a compact and lightweight advanced radar system for short- and medium-range detection performing all the functions of surveillance, self-defence, IFF capabilities and weapon designation. The new radar systems were installed on the Lithuanian Flyvefisken (Standard Flex 300) class offshore patrol vessels (OPVs) Žemaitis (P11), Dzūkas (P12), Aukštaitis (P14) and Sėlis (P15). Working effectively together The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages The main role of the new equipment is to ensure the safety of ships when navigating in narrow passages (e.g., straits, port channels) and in the open sea, as well as in search and rescue missions. The systems will allow objects to be detected up to 100 kilometers away. The Commander of the Lithuanian Naval Forces Sea, Captain Giedrius Premeneckas underlined: “The successful implementation of this project represents a significant step in strengthening the capabilities of the Navy’s patrol vessels and significantly increasing our ability to carry out assigned tasks and work effectively together with NATO allies.” The President of GEM elettronica Ing. Antonio Bontempi answered “We are delighted to have successfully contributed to the realization of this strategic project. We are also proud of what achieved by our R&D and Production teams who worked together with passion and tenacity to ensure the project was achieved within the expected timescales.”
From its foundation in 1959, Mitsubishi Ore Transport (MOT) has been committed to upholding the highest standards in maritime safety and security, and to delivering premium-quality marine transport services using advanced ship management technologies. Inmarsat’s Fleet Xpress As part of NYK, the future-oriented organisation operates a fleet of 17 vessels and seeks to harness the vast potential of an increasingly connected maritime ecosystem to realise its digitalisation and decarbonisation objectives. It was in line with these goals, and to accelerate the adoption of digital services on board its vessels, that MOT adopted Inmarsat’s Fleet Xpress across its fleet. Simple, convenient, and fast communication MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy Combining the high speeds of Inmarsat’s Global Xpress Ka-band network with unlimited backup from its FleetBroadband L-band service, Fleet Xpress provides the continuous connectivity MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy. Captain Gregario C. Ogatis, Master of the MOT-managed bulk carrier Santa Isabel, described Inmarsat’s connectivity solution as “very simple, convenient and fast”, adding that it allows onboard personnel to “communicate easily with shore”. Quick information exchange Building on Ogatis’s remarks, Tesuro Ideguci, Chief Engineer, MOT, commented, “Inmarsat’s Fleet Xpress has allowed us to communicate with external parties and receive information very quickly, which is extremely beneficial." "Thanks to Fleet Xpress, I believe the way we work on land and sea will change significantly in the future, and we will see improvements in all aspects of information exchange.” Synthetic virtual networks Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its route As well as supporting fast and seamless business communications, Fleet Xpress helps crew members make the most of their free time by allowing them to keep in touch with family and friends and enjoy online entertainment on their own devices without interfering with mission-critical connectivity. Using synthetic virtual networks, Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its own dedicated route to the user. The bandwidth used outside of these essential services also receives its own pipeline, ensuring connectivity for both business and leisure, and achieves the highest standards in speed, reliability, and security. Enhanced efficiency, reduced fuel consumption Santa Isabel also benefits from Inmarsat’s Fleet Data, a maritime Internet-of-Things (IoT) platform that provides full data ownership and access from a single customisable dashboard. Fleet Data transforms the way ship owners and managers collect, transfer, analyse, store, and share vessel data for quick performance-based and historical benchmarking across the fleet. These insights support enhanced decision-making for more efficient and sustainable operations. Fleet Data is available on the Fleet Edge platform – a versatile, fully integrated modular solution giving Santa Isabel a path to operational efficiency, decarbonisation, and enhanced crew welfare over the Fleet Xpress network. Improving operational efficiency IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule Shunsuke Miyazaki, General Manager, of Mitsubishi Corporation (MC) Shipping, which owns Santa Isabel among other MOT-chartered or managed ships, commented, “In the trend towards global decarbonisation, the key is how to operate vessels more efficiently to reduce fuel consumption. We use Fleet Data to send information from the ship in real-time, and we leverage these insights to improve operational efficiency.” For the two MC-owned vessels already deploying Fleet Data, Miyazaki added, the IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule. Connectivity with certainty As the maritime industry becomes increasingly digitalised, more and more shipping companies are embracing new technologies and upgrading their satellite communications services to enable digitalisation, decarbonisation, and crew connectivity. This is why so many shipping companies rely on the Fleet Xpress suite of services, all delivered through our world-pioneering satellite network. Digital service adoption Inmarsat’s services are built to deliver control over the entire connectivity ecosystem" “We are delighted to support Mitsubishi Ore Transport solutions in driving the adoption of digital services on board,” said Gert-Jan Panken, Vice President of Sales, Inmarsat. “Inmarsat’s services are built to deliver control over the entire connectivity ecosystem." Build-in competitive advantages "With Fleet Xpress, shipping companies like MOT gain access to a host of opportunities to optimise and drive efficiency, the ability to attract and retain the most talented crew, and the capacity to future-proof operations and build-in competitive advantages." "By providing a clear view of what satellite communications mean to your business today and tomorrow, Inmarsat offers connectivity with certainty.”
Rodman Polyships S.A.U., a Rodman Group shipyard specialised in the building of all types of GRP (Glass Fibre Reinforced Polyester) boats, has delivered a new professional boat to the Maritime Service of the Spanish Civil Guard. She is the new Rodman 66, a monohull, cabin type construction, with an aluminium hull and deck and a superstructure in glass fibre reinforced polyester (GRP) using hybrid multi-axial materials of aramid and E-glass and other synthetic and mineral fibres. New Rodman 66 all-weather patrol boat The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions The new Rodman 66 is an all-weather patrol boat, specially designed to carry out patrol missions, anti-illegal immigration tasks, and protection of the marine environment, surveillance and anti-drug trafficking activities, as well as other specific duties of the Spanish Civil Guard. Main features of the new Rodman 66 patrol boat: With an overall length of 22 metres and a top speed of almost 44 knots, she has been created by the shipyard’s design, technical and engineering teams, perfectly combining high performance, reliability, building quality and seaworthiness. The propulsion consists of two MAN engines of 1,400 HP each and two Hamilton Waterjets. The boat can accommodate a maximum of 5 crew members, with two cabins. The accommodation is complete with galley, dining room, living area and complete toilet. Providing a range of more than 800 nautical miles, the new Rodman 66 offers great versatility in surveillance and intervention operations. Completing the equipment of the Rodman 66 patrol boat, we highlight a 4.5 m. TarpónPro tender and a deck crane for boat services. New model developed to meet specific needs This new model has been developed to meet the specific needs of the owner, in addition to the various technical and construction quality requirements of Rodman’s standard, optimising the safety and comfort of the crew and people on board. The construction of this new patrol boat model consolidates Rodman’s position as one of the world leaders in the construction of professional crafts. Boats and vessels built by Rodman recognised globally All the professional and leisure boats and vessels built by the shipyard are widely recognised and highly valued by the most demanding owners, as well as by organisations and governmental administrations all over the world.
Cochin Shipyard Limited (CSL), the premier shipbuilding and ship repair company in India, has delivered the 10th Electric Hybrid 100 Pax Water Metro Ferry BY 125 to Kochi Water Metro. The occasion was marked by the Delivery Protocol Signing ceremony held at CSL, in the presence of Directors of KMRL and CSL, along with senior officials from KMRL, CSL, DNV, and IRS. Shri. Harikrishnan S, Chief General Manager - CSL, and Shri. Shaji P Jananardhanan, Chief General Manager - KMRL, signed the protocol document on behalf of their respective organisations. Both organisations worked closely towards the successful completion of this project, which contributes significantly to the sustainable development and modernisation of water transportation in Kochi, India. Electric Hybrid 100 Pax Water Metro Ferry BY 125 The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel The Electric Hybrid 100 Pax Water Metro Ferry BY 125 is a state-of-the-art vessel designed to provide efficient, eco-friendly, and convenient transportation options for the residents and visitors of Kochi. With a focus on sustainability and environmental responsibility, this ferry is equipped with electric hybrid technology, ensuring reduced emissions and minimised environmental impact. CSL and KMRL partner to advance India’s maritime capabilities By achieving the milestone of delivering the 10th Water Metro Ferry, CSL and KMRL have demonstrated their commitment to advancing the Nation's maritime capabilities, while prioritising eco-conscious transportation solutions. The collaboration between the two esteemed organisations is a testament to the potential for excellence within the Indian shipbuilding industry. CSL and KMRL officials conveyed their gratitude to all stakeholders, including DNV and IRS, for their support and partnership on the project.
Universal and equitable access to drinking water and adequate sanitation and hygiene services, as well as the improvement of water quality at a global level, are part of the Sustainable Development Goals of the 2030 Agenda for Sustainable Development, but they have also become part of a daily problem in many parts of the planet. Ingeteam, with its Indar submersible pumps and motors designed and manufactured in Beasain, Spain, contributes to solve part of this problem; and among the numerous applications for which the submersible pumps and motors are intended are desalination plants. Indar submersible pumps and motors installed In this context, the six pumps and their corresponding submersible motors have been installed in the desalination plants of Alicante I and San Pedro del Pinatar I, both belonging to the Commonwealth of the Taibilla Canals, and their main task will be to take the water to be desalinated from the sea and discharge it as drinking water to the primary water network of the region, which in the summer period has more than 3 million inhabitants. The desalination plants and their operation The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain The Alicante I desalination plant is located in Aguamarga, in the municipality of Alicante, Spain. It has a maximum production of 57,500 m³ of water per day and the treated water is fed into the New Alicante Canal (enlarged in 2006). In this installation, 2 Indar pumps manufactured by Ingeteam have been implemented with their respective motors. These water collection units will work in coastal vertical wells which usually have a high variability of water level. Seawater desalination plant using Ingeteam technology The second seawater desalination plant using Ingeteam technology is called San Pedro de Pinatar 1. It is designed to produce and supply the Commonwealth with a daily volume of up to 65,000 m³ of drinking water. The plant is located in the El Mojón area, near the Salinas and Arenales de San Pedro del Pinatar, in the Region of Murcia, Spain. The new units supplied will replace the 4 identical units supplied by the company in 2003. Stainless steel units supplied The 6 units for these desalination plants have been supplied to Ingeteam’s distributor, Juan Azcue, S.A., and are made of stainless steel, which is highly resistant to corrosion in aggressive environments, such as salinity, humidity, and acid or alkaline media. Both plants take the water from the vicinity and then proceed to its treatment. Thus, the process includes a seawater pretreatment that guarantees its optimal conditions (physical and chemical); desalination as such, which is carried out by means of membrane racks; and finally, a seawater post-treatment that guarantees compliance with the criteria established for water for human consumption by the regulations in force.